HKUST-Trans-Lab/Lab-arXiv
Computation and Language 97
☆ Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
comment: Project webpage: https://aim-uofa.github.io/dLLM-MidTruth
☆ Complex Logical Instruction Generation
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditionals, nesting, recursion, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF
☆ OdysseyBench: Evaluating LLM Agents on Long-Horizon Complex Office Application Workflows
Autonomous agents powered by large language models (LLMs) are increasingly deployed in real-world applications requiring complex, long-horizon workflows. However, existing benchmarks predominantly focus on atomic tasks that are self-contained and independent, failing to capture the long-term contextual dependencies and multi-interaction coordination required in realistic scenarios. To address this gap, we introduce OdysseyBench, a comprehensive benchmark for evaluating LLM agents on long-horizon workflows across diverse office applications including Word, Excel, PDF, Email, and Calendar. Our benchmark comprises two complementary splits: OdysseyBench+ with 300 tasks derived from real-world use cases, and OdysseyBench-Neo with 302 newly synthesized complex tasks. Each task requires agent to identify essential information from long-horizon interaction histories and perform multi-step reasoning across various applications. To enable scalable benchmark creation, we propose HomerAgents, a multi-agent framework that automates the generation of long-horizon workflow benchmarks through systematic environment exploration, task generation, and dialogue synthesis. Our extensive evaluation demonstrates that OdysseyBench effectively challenges state-of-the-art LLM agents, providing more accurate assessment of their capabilities in complex, real-world contexts compared to existing atomic task benchmarks. We believe that OdysseyBench will serve as a valuable resource for advancing the development and evaluation of LLM agents in real-world productivity scenarios. In addition, we release OdysseyBench and HomerAgents to foster research along this line.
☆ SinLlama - A Large Language Model for Sinhala
Low-resource languages such as Sinhala are often overlooked by open-source Large Language Models (LLMs). In this research, we extend an existing multilingual LLM (Llama-3-8B) to better serve Sinhala. We enhance the LLM tokenizer with Sinhala specific vocabulary and perform continual pre-training on a cleaned 10 million Sinhala corpus, resulting in the SinLlama model. This is the very first decoder-based open-source LLM with explicit Sinhala support. When SinLlama was instruction fine-tuned for three text classification tasks, it outperformed base and instruct variants of Llama-3-8B by a significant margin.
☆ AutoCodeBench: Large Language Models are Automatic Code Benchmark Generators
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, with code generation emerging as a key area of focus. While numerous benchmarks have been proposed to evaluate their code generation abilities, these benchmarks face several critical limitations. First, they often rely on manual annotations, which are time-consuming and difficult to scale across different programming languages and problem complexities. Second, most existing benchmarks focus primarily on Python, while the few multilingual benchmarks suffer from limited difficulty and uneven language distribution. To address these challenges, we propose AutoCodeGen, an automated method for generating high-difficulty multilingual code generation datasets without manual annotations. AutoCodeGen ensures the correctness and completeness of test cases by generating test inputs with LLMs and obtaining test outputs through a multilingual sandbox, while achieving high data quality through reverse-order problem generation and multiple filtering steps. Using this novel method, we introduce AutoCodeBench, a large-scale code generation benchmark comprising 3,920 problems evenly distributed across 20 programming languages. It is specifically designed to evaluate LLMs on challenging, diverse, and practical multilingual tasks. We evaluate over 30 leading open-source and proprietary LLMs on AutoCodeBench and its simplified version AutoCodeBench-Lite. The results show that even the most advanced LLMs struggle with the complexity, diversity, and multilingual nature of these tasks. Besides, we introduce AutoCodeBench-Complete, specifically designed for base models to assess their few-shot code generation capabilities. We hope the AutoCodeBench series will serve as a valuable resource and inspire the community to focus on more challenging and practical multilingual code generation scenarios.
comment: Homepage: https://autocodebench.github.io/
☆ Link Prediction for Event Logs in the Process Industry
Knowledge management (KM) is vital in the process industry for optimizing operations, ensuring safety, and enabling continuous improvement through effective use of operational data and past insights. A key challenge in this domain is the fragmented nature of event logs in shift books, where related records, e.g., entries documenting issues related to equipment or processes and the corresponding solutions, may remain disconnected. This fragmentation hinders the recommendation of previous solutions to the users. To address this problem, we investigate record linking (RL) as link prediction, commonly studied in graph-based machine learning, by framing it as a cross-document coreference resolution (CDCR) task enhanced with natural language inference (NLI) and semantic text similarity (STS) by shifting it into the causal inference (CI). We adapt CDCR, traditionally applied in the news domain, into an RL model to operate at the passage level, similar to NLI and STS, while accommodating the process industry's specific text formats, which contain unstructured text and structured record attributes. Our RL model outperformed the best versions of NLI- and STS-driven baselines by 28% (11.43 points) and 27% (11.21 points), respectively. Our work demonstrates how domain adaptation of the state-of-the-art CDCR models, enhanced with reasoning capabilities, can be effectively tailored to the process industry, improving data quality and connectivity in shift logs.
☆ Utilizing Multilingual Encoders to Improve Large Language Models for Low-Resource Languages
Large Language Models (LLMs) excel in English, but their performance degrades significantly on low-resource languages (LRLs) due to English-centric training. While methods like LangBridge align LLMs with multilingual encoders such as the Massively Multilingual Text-to-Text Transfer Transformer (mT5), they typically use only the final encoder layer. We propose a novel architecture that fuses all intermediate layers, enriching the linguistic information passed to the LLM. Our approach features two strategies: (1) a Global Softmax weighting for overall layer importance, and (2) a Transformer Softmax model that learns token-specific weights. The fused representations are mapped into the LLM's embedding space, enabling it to process multilingual inputs. The model is trained only on English data, without using any parallel or multilingual data. Evaluated on XNLI, IndicXNLI, Sinhala News Classification, and Amazon Reviews, our Transformer Softmax model significantly outperforms the LangBridge baseline. We observe strong performance gains in LRLs, improving Sinhala classification accuracy from 71.66% to 75.86% and achieving clear improvements across Indic languages such as Tamil, Bengali, and Malayalam. These specific gains contribute to an overall boost in average XNLI accuracy from 70.36% to 71.50%. This approach offers a scalable, data-efficient path toward more capable and equitable multilingual LLMs.
☆ CPO: Addressing Reward Ambiguity in Role-playing Dialogue via Comparative Policy Optimization
Reinforcement Learning Fine-Tuning (RLFT) has achieved notable success in tasks with objectively verifiable answers (e.g., code generation, mathematical reasoning), yet struggles with open-ended subjective tasks like role-playing dialogue. Traditional reward modeling approaches, which rely on independent sample-wise scoring, face dual challenges: subjective evaluation criteria and unstable reward signals.Motivated by the insight that human evaluation inherently combines explicit criteria with implicit comparative judgments, we propose Comparative Policy Optimization (CPO). CPO redefines the reward evaluation paradigm by shifting from sample-wise scoring to comparative group-wise scoring.Building on the same principle, we introduce the CharacterArena evaluation framework, which comprises two stages:(1) Contextualized Multi-turn Role-playing Simulation, and (2) Trajectory-level Comparative Evaluation. By operationalizing subjective scoring via objective trajectory comparisons, CharacterArena minimizes contextual bias and enables more robust and fair performance evaluation. Empirical results on CharacterEval, CharacterBench, and CharacterArena confirm that CPO effectively mitigates reward ambiguity and leads to substantial improvements in dialogue quality.
☆ READER: Retrieval-Assisted Drafter for Efficient LLM Inference
Large Language Models (LLMs) generate tokens autoregressively, with each token depending on the preceding context. This sequential nature makes the inference process inherently difficult to accelerate, posing a significant challenge for efficient deployment. In recent years, various methods have been proposed to address this issue, with the most effective approaches often involving the training of additional draft models. In this paper, we introduce READER (Retrieval-Assisted Drafter for Efficient LLM Inference), a novel lossless speculative decoding method that enhances model-based approaches by leveraging self-repetitions in the text. Our algorithm expands the speculative decoding tree using tokens obtained through statistical search. This work focuses on large batch sizes (>= 8), an underexplored yet important area for industrial applications. We also analyze the key-value (KV) cache size during speculative decoding and propose an optimization to improve performance for large batches. As a result, READER outperforms existing speculative decoding methods. Notably, READER requires no additional training and can reuse pre-trained speculator models, increasing the speedup by over 40\%. Our method demonstrates particularly strong performance on search-based tasks, such as retrieval-augmented generation, where we achieve more than 10x speedup.
☆ MVISU-Bench: Benchmarking Mobile Agents for Real-World Tasks by Multi-App, Vague, Interactive, Single-App and Unethical Instructions ACM MM 2025
Given the significant advances in Large Vision Language Models (LVLMs) in reasoning and visual understanding, mobile agents are rapidly emerging to meet users' automation needs. However, existing evaluation benchmarks are disconnected from the real world and fail to adequately address the diverse and complex requirements of users. From our extensive collection of user questionnaire, we identified five tasks: Multi-App, Vague, Interactive, Single-App, and Unethical Instructions. Around these tasks, we present \textbf{MVISU-Bench}, a bilingual benchmark that includes 404 tasks across 137 mobile applications. Furthermore, we propose Aider, a plug-and-play module that acts as a dynamic prompt prompter to mitigate risks and clarify user intent for mobile agents. Our Aider is easy to integrate into several frameworks and has successfully improved overall success rates by 19.55\% compared to the current state-of-the-art (SOTA) on MVISU-Bench. Specifically, it achieves success rate improvements of 53.52\% and 29.41\% for unethical and interactive instructions, respectively. Through extensive experiments and analysis, we highlight the gap between existing mobile agents and real-world user expectations.
comment: ACM MM 2025
LLM-as-a-Supervisor: Mistaken Therapeutic Behaviors Trigger Targeted Supervisory Feedback
Although large language models (LLMs) hold significant promise in psychotherapy, their direct application in patient-facing scenarios raises ethical and safety concerns. Therefore, this work shifts towards developing an LLM as a supervisor to train real therapists. In addition to the privacy of clinical therapist training data, a fundamental contradiction complicates the training of therapeutic behaviors: clear feedback standards are necessary to ensure a controlled training system, yet there is no absolute "gold standard" for appropriate therapeutic behaviors in practice. In contrast, many common therapeutic mistakes are universal and identifiable, making them effective triggers for targeted feedback that can serve as clearer evidence. Motivated by this, we create a novel therapist-training paradigm: (1) guidelines for mistaken behaviors and targeted correction strategies are first established as standards; (2) a human-in-the-loop dialogue-feedback dataset is then constructed, where a mistake-prone agent intentionally makes standard mistakes during interviews naturally, and a supervisor agent locates and identifies mistakes and provides targeted feedback; (3) after fine-tuning on this dataset, the final supervisor model is provided for real therapist training. The detailed experimental results of automated, human and downstream assessments demonstrate that models fine-tuned on our dataset MATE, can provide high-quality feedback according to the clinical guideline, showing significant potential for the therapist training scenario.
comment: 9 pages, 5 figures
☆ P/D-Device: Disaggregated Large Language Model between Cloud and Devices
Serving disaggregated large language models has been widely adopted in industrial practice for enhanced performance. However, too many tokens generated in decoding phase, i.e., occupying the resources for a long time, essentially hamper the cloud from achieving a higher throughput. Meanwhile, due to limited on-device resources, the time to first token (TTFT), i.e., the latency of prefill phase, increases dramatically with the growth on prompt length. In order to concur with such a bottleneck on resources, i.e., long occupation in cloud and limited on-device computing capacity, we propose to separate large language model between cloud and devices. That is, the cloud helps a portion of the content for each device, only in its prefill phase. Specifically, after receiving the first token from the cloud, decoupling with its own prefill, the device responds to the user immediately for a lower TTFT. Then, the following tokens from cloud are presented via a speed controller for smoothed TPOT (the time per output token), until the device catches up with the progress. On-device prefill is then amortized using received tokens while the resource usage in cloud is controlled. Moreover, during cloud prefill, the prompt can be refined, using those intermediate data already generated, to further speed up on-device inference. We implement such a scheme P/D-Device, and confirm its superiority over other alternatives. We further propose an algorithm to decide the best settings. Real-trace experiments show that TTFT decreases at least 60%, maximum TPOT is about tens of milliseconds, and cloud throughput increases by up to 15x.
☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in suboptimal or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Extensive experiments show that E3-Rewrite achieves up to a 25.6\% reduction in query execution time compared to state-of-the-art methods across multiple SQL benchmarks. Moreover, it delivers up to 24.4\% more successful rewrites, expanding coverage to complex queries that previous systems failed to handle.
☆ A Survey on Training-free Alignment of Large Language Models
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
☆ LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA SemEval 2025
This paper describes our participation in SemEval 2025 Task 8, focused on Tabular Question Answering. We developed a zero-shot pipeline that leverages an Large Language Model to generate functional code capable of extracting the relevant information from tabular data based on an input question. Our approach consists of a modular pipeline where the main code generator module is supported by additional components that identify the most relevant columns and analyze their data types to improve extraction accuracy. In the event that the generated code fails, an iterative refinement process is triggered, incorporating the error feedback into a new generation prompt to enhance robustness. Our results show that zero-shot code generation is a valid approach for Tabular QA, achieving rank 33 of 53 in the test phase despite the lack of task-specific fine-tuning.
comment: Accepted to SemEval 2025. Camera-ready version
☆ Retrospective Sparse Attention for Efficient Long-Context Generation
Large Language Models (LLMs) are increasingly deployed in long-context tasks such as reasoning, code generation, and multi-turn dialogue. However, inference over extended contexts is bottlenecked by the Key-Value (KV) cache, whose memory footprint grows linearly with sequence length and dominates latency at each decoding step. While recent KV cache compression methods identify and load important tokens, they focus predominantly on input contexts and fail to address the cumulative attention errors that arise during long decoding. In this paper, we introduce RetroAttention, a novel KV cache update technique that retrospectively revises past attention outputs using newly arrived KV entries from subsequent decoding steps. By maintaining a lightweight output cache, RetroAttention enables past queries to efficiently access more relevant context, while incurring minimal latency overhead. This breaks the fixed-attention-output paradigm and allows continual correction of prior approximations. Extensive experiments on long-generation benchmarks show that RetroAttention consistently outperforms state-of-the-art (SOTA) KV compression methods, increasing effective KV exposure by up to 1.6$\times$ and accuracy by up to 21.9\%.
☆ Revealing the Role of Audio Channels in ASR Performance Degradation
Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
comment: Accepted to IEEE ASRU 2025
☆ Jointly Generating and Attributing Answers using Logits of Document-Identifier Tokens
Despite their impressive performances, Large Language Models (LLMs) remain prone to hallucination, which critically undermines their trustworthiness. While most of the previous work focused on tackling answer and attribution correctness, a recent line of work investigated faithfulness, with a focus on leveraging internal model signals to reflect a model's actual decision-making process while generating the answer. Nevertheless, these methods induce additional latency and have shown limitations in directly aligning token generation with attribution generation. In this paper, we introduce LoDIT, a method that jointly generates and faithfully attributes answers in RAG by leveraging specific token logits during generation. It consists of two steps: (1) marking the documents with specific token identifiers and then leveraging the logits of these tokens to estimate the contribution of each document to the answer during generation, and (2) aggregating these contributions into document attributions. Experiments on a trustworthiness-focused attributed text-generation benchmark, Trust-Align, show that LoDIT significantly outperforms state-of-the-art models on several metrics. Finally, an in-depth analysis of LoDIT shows both its efficiency in terms of latency and its robustness in different settings.
☆ Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
comment: Under Review
☆ Reveal-Bangla: A Dataset for Cross-Lingual Multi-Step Reasoning Evaluation AACL 2025
Language models have demonstrated remarkable performance on complex multi-step reasoning tasks. However, their evaluation has been predominantly confined to high-resource languages such as English. In this paper, we introduce a manually translated Bangla multi-step reasoning dataset derived from the English Reveal dataset, featuring both binary and non-binary question types. We conduct a controlled evaluation of English-centric and Bangla-centric multilingual small language models on the original dataset and our translated version to compare their ability to exploit relevant reasoning steps to produce correct answers. Our results show that, in comparable settings, reasoning context is beneficial for more challenging non-binary questions, but models struggle to employ relevant Bangla reasoning steps effectively. We conclude by exploring how reasoning steps contribute to models' predictions, highlighting different trends across models and languages.
comment: Submitted to IJCNLP-AACL 2025
☆ Munsit at NADI 2025 Shared Task 2: Pushing the Boundaries of Multidialectal Arabic ASR with Weakly Supervised Pretraining and Continual Supervised Fine-tuning
Automatic speech recognition (ASR) plays a vital role in enabling natural human-machine interaction across applications such as virtual assistants, industrial automation, customer support, and real-time transcription. However, developing accurate ASR systems for low-resource languages like Arabic remains a significant challenge due to limited labeled data and the linguistic complexity introduced by diverse dialects. In this work, we present a scalable training pipeline that combines weakly supervised learning with supervised fine-tuning to develop a robust Arabic ASR model. In the first stage, we pretrain the model on 15,000 hours of weakly labeled speech covering both Modern Standard Arabic (MSA) and various Dialectal Arabic (DA) variants. In the subsequent stage, we perform continual supervised fine-tuning using a mixture of filtered weakly labeled data and a small, high-quality annotated dataset. Our approach achieves state-of-the-art results, ranking first in the multi-dialectal Arabic ASR challenge. These findings highlight the effectiveness of weak supervision paired with fine-tuning in overcoming data scarcity and delivering high-quality ASR for low-resource, dialect-rich languages.
☆ ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
comment: 20 pages, 9 figures
☆ Entangled in Representations: Mechanistic Investigation of Cultural Biases in Large Language Models
The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a better understanding of how the overgeneralization of less documented cultures within LLMs' representations impacts their cultural understanding. Prior work only performs extrinsic evaluation of LLMs' cultural competence, without accounting for how LLMs' internal mechanisms lead to cultural (mis)representation. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of LLMs to elicit the underlying cultural knowledge space. CultureScope utilizes a patching method to extract the cultural knowledge. We introduce a cultural flattening score as a measure of the intrinsic cultural biases. Additionally, we study how LLMs internalize Western-dominance bias and cultural flattening, which allows us to trace how cultural biases emerge within LLMs. Our experimental results reveal that LLMs encode Western-dominance bias and cultural flattening in their cultural knowledge space. We find that low-resource cultures are less susceptible to cultural biases, likely due to their limited training resources. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding. Our codes and data used for experiments are publicly available.
comment: 16 pages, 7 figures
☆ Weakly Supervised Fine-grained Span-Level Framework for Chinese Radiology Report Quality Assurance CIKM 2025
Quality Assurance (QA) for radiology reports refers to judging whether the junior reports (written by junior doctors) are qualified. The QA scores of one junior report are given by the senior doctor(s) after reviewing the image and junior report. This process requires intensive labor costs for senior doctors. Additionally, the QA scores may be inaccurate for reasons like diagnosis bias, the ability of senior doctors, and so on. To address this issue, we propose a Span-level Quality Assurance EvaluaTOR (Sqator) to mark QA scores automatically. Unlike the common document-level semantic comparison method, we try to analyze the semantic difference by exploring more fine-grained text spans. Unlike the common document-level semantic comparison method, we try to analyze the semantic difference by exploring more fine-grained text spans. Specifically, Sqator measures QA scores by measuring the importance of revised spans between junior and senior reports, and outputs the final QA scores by merging all revised span scores. We evaluate Sqator using a collection of 12,013 radiology reports. Experimental results show that Sqator can achieve competitive QA scores. Moreover, the importance scores of revised spans can be also consistent with the judgments of senior doctors.
comment: Accepted by CIKM 2025. 11 pages, 7 figures
☆ BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
☆ Steering Towards Fairness: Mitigating Political Bias in LLMs
Recent advancements in large language models (LLMs) have enabled their widespread use across diverse real-world applications. However, concerns remain about their tendency to encode and reproduce ideological biases, particularly along political and economic dimensions. In this paper, we propose a framework for probing and mitigating such biases in decoder-based LLMs through analysis of internal model representations. Grounded in the Political Compass Test (PCT), our method uses contrastive pairs to extract and compare hidden layer activations from models like Mistral and DeepSeek. We introduce a comprehensive activation extraction pipeline capable of layer-wise analysis across multiple ideological axes, revealing meaningful disparities linked to political framing. Our results show that decoder LLMs systematically encode representational bias across layers, which can be leveraged for effective steering vector-based mitigation. This work provides new insights into how political bias is encoded in LLMs and offers a principled approach to debiasing beyond surface-level output interventions.
comment: Preprint
☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 49 % on the originals but drops by 4 percentage points on surface variants, and by 10.5 percentage points on core-step-based variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 16 pages, 8 figures
☆ TiMoE: Time-Aware Mixture of Language Experts
Large language models (LLMs) are typically trained on fixed snapshots of the web, which means that their knowledge becomes stale and their predictions risk temporal leakage: relying on information that lies in the future relative to a query. We tackle this problem by pre-training from scratch a set of GPT-style experts on disjoint two-year slices of a 2013-2024 corpus and combining them through TiMoE, a Time-aware Mixture of Language Experts. At inference time, TiMoE masks all experts whose training window ends after the query timestamp and merges the remaining log-probabilities in a shared space, guaranteeing strict causal validity while retaining the breadth of multi-period knowledge. We also release TSQA, a 10k-question benchmark whose alternatives are explicitly labelled as past, future or irrelevant, allowing fine-grained measurement of temporal hallucinations. Experiments on eight standard NLP tasks plus TSQA show that a co-adapted TiMoE variant matches or exceeds the best single-period expert and cuts future-knowledge errors by up to 15%. Our results demonstrate that modular, time-segmented pre-training paired with causal routing is a simple yet effective path toward LLMs that stay chronologically grounded without sacrificing general performance much. We open source our code at TiMoE (Github): https://github.com/epfml/TiMoE
☆ A Dual-Axis Taxonomy of Knowledge Editing for LLMs: From Mechanisms to Functions
Large language models (LLMs) acquire vast knowledge from large text corpora, but this information can become outdated or inaccurate. Since retraining is computationally expensive, knowledge editing offers an efficient alternative -- modifying internal knowledge without full retraining. These methods aim to update facts precisely while preserving the model's overall capabilities. While existing surveys focus on the mechanism of editing (e.g., parameter changes vs. external memory), they often overlook the function of the knowledge being edited. This survey introduces a novel, complementary function-based taxonomy to provide a more holistic view. We examine how different mechanisms apply to various knowledge types -- factual, temporal, conceptual, commonsense, and social -- highlighting how editing effectiveness depends on the nature of the target knowledge. By organizing our review along these two axes, we map the current landscape, outline the strengths and limitations of existing methods, define the problem formally, survey evaluation tasks and datasets, and conclude with open challenges and future directions.
comment: 13 pages, 1 figure
☆ Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments
Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.
☆ Privacy-protected Retrieval-Augmented Generation for Knowledge Graph Question Answering
LLMs often suffer from hallucinations and outdated or incomplete knowledge. RAG is proposed to address these issues by integrating external knowledge like that in KGs into LLMs. However, leveraging private KGs in RAG systems poses significant privacy risks due to the black-box nature of LLMs and potential insecure data transmission, especially when using third-party LLM APIs lacking transparency and control. In this paper, we investigate the privacy-protected RAG scenario for the first time, where entities in KGs are anonymous for LLMs, thus preventing them from accessing entity semantics. Due to the loss of semantics of entities, previous RAG systems cannot retrieve question-relevant knowledge from KGs by matching questions with the meaningless identifiers of anonymous entities. To realize an effective RAG system in this scenario, two key challenges must be addressed: (1) How can anonymous entities be converted into retrievable information. (2) How to retrieve question-relevant anonymous entities. Hence, we propose a novel ARoG framework including relation-centric abstraction and structure-oriented abstraction strategies. For challenge (1), the first strategy abstracts entities into high-level concepts by dynamically capturing the semantics of their adjacent relations. It supplements meaningful semantics which can further support the retrieval process. For challenge (2), the second strategy transforms unstructured natural language questions into structured abstract concept paths. These paths can be more effectively aligned with the abstracted concepts in KGs, thereby improving retrieval performance. To guide LLMs to effectively retrieve knowledge from KGs, the two strategies strictly protect privacy from being exposed to LLMs. Experiments on three datasets demonstrate that ARoG achieves strong performance and privacy-robustness.
☆ Designing Memory-Augmented AR Agents for Spatiotemporal Reasoning in Personalized Task Assistance
Augmented Reality (AR) systems are increasingly integrating foundation models, such as Multimodal Large Language Models (MLLMs), to provide more context-aware and adaptive user experiences. This integration has led to the development of AR agents to support intelligent, goal-directed interactions in real-world environments. While current AR agents effectively support immediate tasks, they struggle with complex multi-step scenarios that require understanding and leveraging user's long-term experiences and preferences. This limitation stems from their inability to capture, retain, and reason over historical user interactions in spatiotemporal contexts. To address these challenges, we propose a conceptual framework for memory-augmented AR agents that can provide personalized task assistance by learning from and adapting to user-specific experiences over time. Our framework consists of four interconnected modules: (1) Perception Module for multimodal sensor processing, (2) Memory Module for persistent spatiotemporal experience storage, (3) Spatiotemporal Reasoning Module for synthesizing past and present contexts, and (4) Actuator Module for effective AR communication. We further present an implementation roadmap, a future evaluation strategy, a potential target application and use cases to demonstrate the practical applicability of our framework across diverse domains. We aim for this work to motivate future research toward developing more intelligent AR systems that can effectively bridge user's interaction history with adaptive, context-aware task assistance.
comment: 7 pages, 2 figures
☆ DevNous: An LLM-Based Multi-Agent System for Grounding IT Project Management in Unstructured Conversation
The manual translation of unstructured team dialogue into the structured artifacts required for Information Technology (IT) project governance is a critical bottleneck in modern information systems management. We introduce DevNous, a Large Language Model-based (LLM) multi-agent expert system, to automate this unstructured-to-structured translation process. DevNous integrates directly into team chat environments, identifying actionable intents from informal dialogue and managing stateful, multi-turn workflows for core administrative tasks like automated task formalization and progress summary synthesis. To quantitatively evaluate the system, we introduce a new benchmark of 160 realistic, interactive conversational turns. The dataset was manually annotated with a multi-label ground truth and is publicly available. On this benchmark, DevNous achieves an exact match turn accuracy of 81.3\% and a multiset F1-Score of 0.845, providing strong evidence for its viability. The primary contributions of this work are twofold: (1) a validated architectural pattern for developing ambient administrative agents, and (2) the introduction of the first robust empirical baseline and public benchmark dataset for this challenging problem domain.
☆ SciRerankBench: Benchmarking Rerankers Towards Scientific Retrieval-Augmented Generated LLMs
Scientific literature question answering is a pivotal step towards new scientific discoveries. Recently, \textit{two-stage} retrieval-augmented generated large language models (RAG-LLMs) have shown impressive advancements in this domain. Such a two-stage framework, especially the second stage (reranker), is particularly essential in the scientific domain, where subtle differences in terminology may have a greatly negative impact on the final factual-oriented or knowledge-intensive answers. Despite this significant progress, the potential and limitations of these works remain unexplored. In this work, we present a Scientific Rerank-oriented RAG Benchmark (SciRerankBench), for evaluating rerankers within RAG-LLMs systems, spanning five scientific subjects. To rigorously assess the reranker performance in terms of noise resilience, relevance disambiguation, and factual consistency, we develop three types of question-context-answer (Q-C-A) pairs, i.e., Noisy Contexts (NC), Semantically Similar but Logically Irrelevant Contexts (SSLI), and Counterfactual Contexts (CC). Through systematic evaluation of 13 widely used rerankers on five families of LLMs, we provide detailed insights into their relative strengths and limitations. To the best of our knowledge, SciRerankBench is the first benchmark specifically developed to evaluate rerankers within RAG-LLMs, which provides valuable observations and guidance for their future development.
☆ Magical: Medical Lay Language Generation via Semantic Invariance and Layperson-tailored Adaptation
Medical Lay Language Generation (MLLG) plays a vital role in improving the accessibility of complex scientific content for broader audiences. Recent literature to MLLG commonly employ parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA) to fine-tuning large language models (LLMs) using paired expert-lay language datasets. However, LoRA struggles with the challenges posed by multi-source heterogeneous MLLG datasets. Specifically, through a series of exploratory experiments, we reveal that standard LoRA fail to meet the requirement for semantic fidelity and diverse lay-style generation in MLLG task. To address these limitations, we propose Magical, an asymmetric LoRA architecture tailored for MLLG under heterogeneous data scenarios. Magical employs a shared matrix $A$ for abstractive summarization, along with multiple isolated matrices $B$ for diverse lay-style generation. To preserve semantic fidelity during the lay language generation process, Magical introduces a Semantic Invariance Constraint to mitigate semantic subspace shifts on matrix $A$. Furthermore, to better adapt to diverse lay-style generation, Magical incorporates the Recommendation-guided Switch, an externally interface to prompt the LLM to switch between different matrices $B$. Experimental results on three real-world lay language generation datasets demonstrate that Magical consistently outperforms prompt-based methods, vanilla LoRA, and its recent variants, while also reducing trainable parameters by 31.66%.
☆ IROTE: Human-like Traits Elicitation of Large Language Model via In-Context Self-Reflective Optimization
Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
☆ MultiAiTutor: Child-Friendly Educational Multilingual Speech Generation Tutor with LLMs
Generative speech models have demonstrated significant potential in personalizing teacher-student interactions, offering valuable real-world applications for language learning in children's education. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiAiTutor, an educational multilingual generative AI tutor with child-friendly designs, leveraging LLM architecture for speech generation tailored for educational purposes. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, facilitating young children's language learning through culturally relevant image-description tasks in three low-resource languages: Singaporean-accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiAiTutor compared to baseline methods.
comment: 5 figures
☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation.
☆ Out of the Box, into the Clinic? Evaluating State-of-the-Art ASR for Clinical Applications for Older Adults
Voice-controlled interfaces can support older adults in clinical contexts, with chatbots being a prime example, but reliable Automatic Speech Recognition (ASR) for underrepresented groups remains a bottleneck. This study evaluates state-of-the-art ASR models on language use of older Dutch adults, who interacted with the Welzijn.AI chatbot designed for geriatric contexts. We benchmark generic multilingual ASR models, and models fine-tuned for Dutch spoken by older adults, while also considering processing speed. Our results show that generic multilingual models outperform fine-tuned models, which suggests recent ASR models can generalise well out of the box to realistic datasets. Furthermore, our results suggest that truncating existing architectures is helpful in balancing the accuracy-speed trade-off, though we also identify some cases with high WER due to hallucinations.
☆ TopXGen: Topic-Diverse Parallel Data Generation for Low-Resource Machine Translation
LLMs have been shown to perform well in machine translation (MT) with the use of in-context learning (ICL), rivaling supervised models when translating into high-resource languages (HRLs). However, they lag behind when translating into low-resource language (LRLs). Example selection via similarity search and supervised fine-tuning help. However the improvements they give are limited by the size, quality and diversity of existing parallel datasets. A common technique in low-resource MT is synthetic parallel data creation, the most frequent of which is backtranslation, whereby existing target-side texts are automatically translated into the source language. However, this assumes the existence of good quality and relevant target-side texts, which are not readily available for many LRLs. In this paper, we present \textsc{TopXGen}, an LLM-based approach for the generation of high quality and topic-diverse data in multiple LRLs, which can then be backtranslated to produce useful and diverse parallel texts for ICL and fine-tuning. Our intuition is that while LLMs struggle to translate into LRLs, their ability to translate well into HRLs and their multilinguality enable them to generate good quality, natural-sounding target-side texts, which can be translated well into a high-resource source language. We show that \textsc{TopXGen} boosts LLM translation performance during fine-tuning and in-context learning. Code and outputs are available at https://github.com/ArmelRandy/topxgen.
☆ $\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models IJCAI 2025
Accurate molecular property prediction is a critical challenge with wide-ranging applications in chemistry, materials science, and drug discovery. Molecular representation methods, including fingerprints and graph neural networks (GNNs), achieve state-of-the-art results by effectively deriving features from molecular structures. However, these methods often overlook decades of accumulated semantic and contextual knowledge. Recent advancements in large language models (LLMs) demonstrate remarkable reasoning abilities and prior knowledge across scientific domains, leading us to hypothesize that LLMs can generate rich molecular representations when guided to reason in multiple perspectives. To address these gaps, we propose $\text{M}^{2}$LLM, a multi-view framework that integrates three perspectives: the molecular structure view, the molecular task view, and the molecular rules view. These views are fused dynamically to adapt to task requirements, and experiments demonstrate that $\text{M}^{2}$LLM achieves state-of-the-art performance on multiple benchmarks across classification and regression tasks. Moreover, we demonstrate that representation derived from LLM achieves exceptional performance by leveraging two core functionalities: the generation of molecular embeddings through their encoding capabilities and the curation of molecular features through advanced reasoning processes.
comment: IJCAI 2025
LLM driven Text-to-Table Generation through Sub-Tasks Guidance and Iterative Refinement
Transforming unstructured text into structured data is a complex task, requiring semantic understanding, reasoning, and structural comprehension. While Large Language Models (LLMs) offer potential, they often struggle with handling ambiguous or domain-specific data, maintaining table structure, managing long inputs, and addressing numerical reasoning. This paper proposes an efficient system for LLM-driven text-to-table generation that leverages novel prompting techniques. Specifically, the system incorporates two key strategies: breaking down the text-to-table task into manageable, guided sub-tasks and refining the generated tables through iterative self-feedback. We show that this custom task decomposition allows the model to address the problem in a stepwise manner and improves the quality of the generated table. Furthermore, we discuss the benefits and potential risks associated with iterative self-feedback on the generated tables while highlighting the trade-offs between enhanced performance and computational cost. Our methods achieve strong results compared to baselines on two complex text-to-table generation datasets available in the public domain.
☆ Prompt-Based Approach for Czech Sentiment Analysis
This paper introduces the first prompt-based methods for aspect-based sentiment analysis and sentiment classification in Czech. We employ the sequence-to-sequence models to solve the aspect-based tasks simultaneously and demonstrate the superiority of our prompt-based approach over traditional fine-tuning. In addition, we conduct zero-shot and few-shot learning experiments for sentiment classification and show that prompting yields significantly better results with limited training examples compared to traditional fine-tuning. We also demonstrate that pre-training on data from the target domain can lead to significant improvements in a zero-shot scenario.
comment: Published in Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing (RANLP 2023). Official version: https://aclanthology.org/2023.ranlp-1.118/
☆ UWB at WASSA-2024 Shared Task 2: Cross-lingual Emotion Detection WASSA 2024
This paper presents our system built for the WASSA-2024 Cross-lingual Emotion Detection Shared Task. The task consists of two subtasks: first, to assess an emotion label from six possible classes for a given tweet in one of five languages, and second, to predict words triggering the detected emotions in binary and numerical formats. Our proposed approach revolves around fine-tuning quantized large language models, specifically Orca~2, with low-rank adapters (LoRA) and multilingual Transformer-based models, such as XLM-R and mT5. We enhance performance through machine translation for both subtasks and trigger word switching for the second subtask. The system achieves excellent performance, ranking 1st in numerical trigger words detection, 3rd in binary trigger words detection, and 7th in emotion detection.
comment: Published in Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis (WASSA 2024). Official version: https://aclanthology.org/2024.wassa-1.47/
☆ LLaMA-Based Models for Aspect-Based Sentiment Analysis WASSA 2024
While large language models (LLMs) show promise for various tasks, their performance in compound aspect-based sentiment analysis (ABSA) tasks lags behind fine-tuned models. However, the potential of LLMs fine-tuned for ABSA remains unexplored. This paper examines the capabilities of open-source LLMs fine-tuned for ABSA, focusing on LLaMA-based models. We evaluate the performance across four tasks and eight English datasets, finding that the fine-tuned Orca~2 model surpasses state-of-the-art results in all tasks. However, all models struggle in zero-shot and few-shot scenarios compared to fully fine-tuned ones. Additionally, we conduct error analysis to identify challenges faced by fine-tuned models.
comment: Published in Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis (WASSA 2024). Official version: https://aclanthology.org/2024.wassa-1.6/
☆ Quick on the Uptake: Eliciting Implicit Intents from Human Demonstrations for Personalized Mobile-Use Agents
As multimodal large language models advance rapidly, the automation of mobile tasks has become increasingly feasible through the use of mobile-use agents that mimic human interactions from graphical user interface. To further enhance mobile-use agents, previous studies employ demonstration learning to improve mobile-use agents from human demonstrations. However, these methods focus solely on the explicit intention flows of humans (e.g., step sequences) while neglecting implicit intention flows (e.g., personal preferences), which makes it difficult to construct personalized mobile-use agents. In this work, to evaluate the \textbf{I}ntention \textbf{A}lignment \textbf{R}ate between mobile-use agents and humans, we first collect \textbf{MobileIAR}, a dataset containing human-intent-aligned actions and ground-truth actions. This enables a comprehensive assessment of the agents' understanding of human intent. Then we propose \textbf{IFRAgent}, a framework built upon \textbf{I}ntention \textbf{F}low \textbf{R}ecognition from human demonstrations. IFRAgent analyzes explicit intention flows from human demonstrations to construct a query-level vector library of standard operating procedures (SOP), and analyzes implicit intention flows to build a user-level habit repository. IFRAgent then leverages a SOP extractor combined with retrieval-augmented generation and a query rewriter to generate personalized query and SOP from a raw ambiguous query, enhancing the alignment between mobile-use agents and human intent. Experimental results demonstrate that IFRAgent outperforms baselines by an average of 6.79\% (32.06\% relative improvement) in human intention alignment rate and improves step completion rates by an average of 5.30\% (26.34\% relative improvement). The codes are available at https://github.com/MadeAgents/Quick-on-the-Uptake.
☆ MiGrATe: Mixed-Policy GRPO for Adaptation at Test-Time
Large language models (LLMs) are increasingly being applied to black-box optimization tasks, from program synthesis to molecule design. Prior work typically leverages in-context learning to iteratively guide the model towards better solutions. Such methods, however, often struggle to balance exploration of new solution spaces with exploitation of high-reward ones. Recently, test-time training (TTT) with synthetic data has shown promise in improving solution quality. However, the need for hand-crafted training data tailored to each task limits feasibility and scalability across domains. To address this problem, we introduce MiGrATe-a method for online TTT that uses GRPO as a search algorithm to adapt LLMs at inference without requiring external training data. MiGrATe operates via a mixed-policy group construction procedure that combines on-policy sampling with two off-policy data selection techniques: greedy sampling, which selects top-performing past completions, and neighborhood sampling (NS), which generates completions structurally similar to high-reward ones. Together, these components bias the policy gradient towards exploitation of promising regions in solution space, while preserving exploration through on-policy sampling. We evaluate MiGrATe on three challenging domains-word search, molecule optimization, and hypothesis+program induction on the Abstraction and Reasoning Corpus (ARC)-and find that it consistently outperforms both inference-only and TTT baselines, demonstrating the potential of online TTT as a solution for complex search tasks without external supervision.
☆ InternBootcamp Technical Report: Boosting LLM Reasoning with Verifiable Task Scaling
Large language models (LLMs) have revolutionized artificial intelligence by enabling complex reasoning capabilities. While recent advancements in reinforcement learning (RL) have primarily focused on domain-specific reasoning tasks (e.g., mathematics or code generation), real-world reasoning scenarios often require models to handle diverse and complex environments that narrow-domain benchmarks cannot fully capture. To address this gap, we present InternBootcamp, an open-source framework comprising 1000+ domain-diverse task environments specifically designed for LLM reasoning research. Our codebase offers two key functionalities: (1) automated generation of unlimited training/testing cases with configurable difficulty levels, and (2) integrated verification modules for objective response evaluation. These features make InternBootcamp fundamental infrastructure for RL-based model optimization, synthetic data generation, and model evaluation. Although manually developing such a framework with enormous task coverage is extremely cumbersome, we accelerate the development procedure through an automated agent workflow supplemented by manual validation protocols, which enables the task scope to expand rapidly. % With these bootcamps, we further establish Bootcamp-EVAL, an automatically generated benchmark for comprehensive performance assessment. Evaluation reveals that frontier models still underperform in many reasoning tasks, while training with InternBootcamp provides an effective way to significantly improve performance, leading to our 32B model that achieves state-of-the-art results on Bootcamp-EVAL and excels on other established benchmarks. In particular, we validate that consistent performance gains come from including more training tasks, namely \textbf{task scaling}, over two orders of magnitude, offering a promising route towards capable reasoning generalist.
comment: InternBootcamp Tech Report
☆ Adaptive Personalized Conversational Information Retrieval CIKM 2025
Personalized conversational information retrieval (CIR) systems aim to satisfy users' complex information needs through multi-turn interactions by considering user profiles. However, not all search queries require personalization. The challenge lies in appropriately incorporating personalization elements into search when needed. Most existing studies implicitly incorporate users' personal information and conversational context using large language models without distinguishing the specific requirements for each query turn. Such a ``one-size-fits-all'' personalization strategy might lead to sub-optimal results. In this paper, we propose an adaptive personalization method, in which we first identify the required personalization level for a query and integrate personalized queries with other query reformulations to produce various enhanced queries. Then, we design a personalization-aware ranking fusion approach to assign fusion weights dynamically to different reformulated queries, depending on the required personalization level. The proposed adaptive personalized conversational information retrieval framework APCIR is evaluated on two TREC iKAT datasets. The results confirm the effectiveness of adaptive personalization of APCIR by outperforming state-of-the-art methods.
comment: Accepted by CIKM 2025
☆ Optimizing Retrieval-Augmented Generation (RAG) for Colloquial Cantonese: A LoRA-Based Systematic Review
This review examines recent advances in Parameter-Efficient Fine-Tuning (PEFT), with a focus on Low-Rank Adaptation (LoRA), to optimize Retrieval-Augmented Generation (RAG) systems like Qwen3, DeepSeek, and Kimi. These systems face challenges in understanding and generating authentic Cantonese colloquial expressions due to limited annotated data and linguistic variability. The review evaluates the integration of LoRA within RAG frameworks, benchmarks PEFT methods for retrieval and generation accuracy, identify domain adaptation strategies under limited data, and compares fine-tuning techniques aimed at improving semantic fidelity under data-scarce conditions. A systematic analysis of recent studies employing diverse LoRA variants, synthetic data generation, user feedback integration, and adaptive parameter allocation was conducted to assess their impact on computational efficiency, retrieval precision, linguistic authenticity, and scalability. Findings reveal that dynamic and ensemble LoRA adaptations significantly reduce trainable parameters without sacrificing retrieval accuracy and generation quality in dialectal contexts. However, limitations remain in fully preserving fine-grained linguistic nuances, especially for low-resource settings like Cantonese. The integration of real-time user feedback and domain-specific data remains underdeveloped, limiting model adaptability and personalization. While selective parameter freezing and nonlinear adaptation methods offer better trade-offs between efficiency and accuracy, their robustness at scale remains an open challenge. This review highlights the promise of PEFT-enhanced RAG systems for domain-specific language tasks and calls for future work targeting dialectal authenticity, dynamic adaptation, and scalable fine-tuning pipelines.
comment: 27 pages, 1 figure, 8 tables
☆ DepressLLM: Interpretable domain-adapted language model for depression detection from real-world narratives
Advances in large language models (LLMs) have enabled a wide range of applications. However, depression prediction is hindered by the lack of large-scale, high-quality, and rigorously annotated datasets. This study introduces DepressLLM, trained and evaluated on a novel corpus of 3,699 autobiographical narratives reflecting both happiness and distress. DepressLLM provides interpretable depression predictions and, via its Score-guided Token Probability Summation (SToPS) module, delivers both improved classification performance and reliable confidence estimates, achieving an AUC of 0.789, which rises to 0.904 on samples with confidence $\geq$ 0.95. To validate its robustness to heterogeneous data, we evaluated DepressLLM on in-house datasets, including an Ecological Momentary Assessment (EMA) corpus of daily stress and mood recordings, and on public clinical interview data. Finally, a psychiatric review of high-confidence misclassifications highlighted key model and data limitations that suggest directions for future refinements. These findings demonstrate that interpretable AI can enable earlier diagnosis of depression and underscore the promise of medical AI in psychiatry.
☆ Fine-grained Video Dubbing Duration Alignment with Segment Supervised Preference Optimization ACL2025
Video dubbing aims to translate original speech in visual media programs from the source language to the target language, relying on neural machine translation and text-to-speech technologies. Due to varying information densities across languages, target speech often mismatches the source speech duration, causing audio-video synchronization issues that significantly impact viewer experience. In this study, we approach duration alignment in LLM-based video dubbing machine translation as a preference optimization problem. We propose the Segment Supervised Preference Optimization (SSPO) method, which employs a segment-wise sampling strategy and fine-grained loss to mitigate duration mismatches between source and target lines. Experimental results demonstrate that SSPO achieves superior performance in duration alignment tasks.
comment: This paper is accepted by ACL2025 (Main)
♻ ☆ Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: COLM 2025, Data and Code: https://github.com/HanNight/RAMDocs
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts -- where missed cues can stereotype communities and undermine usability. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit (stated) as well as implicit (unstated, implied by the prompt's cultural context) cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we show that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, provide a concrete testbed, and outline actionable directions for developing culturally informed T2I models and metrics that improve global usability.
♻ ☆ LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
♻ ☆ Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
As Multimodal Large Language Models (MLLMs) continue to evolve, their cognitive and reasoning capabilities have seen remarkable progress. However, challenges in visual fine-grained perception and commonsense causal inference persist. This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty, emphasizing detailed visual recognition while incorporating real-world commonsense understanding to evaluate causal reasoning abilities. Expanding on it, we present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function, enabling a more holistic evaluation of MLLMs' responses in opinion-based reasoning tasks. Experiments conducted on 26 mainstream MLLMs reveal that the highest performance in visual fine-grained reasoning reaches only 0.46, highlighting considerable potential for enhancement. Our research offers valuable perspectives for the continued refinement of MLLMs.
♻ ☆ RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
♻ ☆ Opioid Named Entity Recognition (ONER-2025) from Reddit
The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).
♻ ☆ Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions ACL 2025
We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
comment: Published in Findings of the Association for Computational Linguistics: ACL 2025
♻ ☆ Mind the Gap: Benchmarking LLM Uncertainty, Discrimination, and Calibration in Specialty-Aware Clinical QA
Reliable uncertainty quantification (UQ) is essential when employing large language models (LLMs) in high-risk domains such as clinical question answering (QA). In this work, we evaluate uncertainty estimation methods for clinical QA focusing, for the first time, on eleven clinical specialties and six question types, and across ten open-source LLMs (general-purpose, biomedical, and reasoning models). We analyze score-based UQ methods, present a case study introducing a novel lightweight method based on behavioral features derived from reasoning-oriented models, and examine conformal prediction as a complementary set-based approach. Our findings reveal that uncertainty reliability is not a monolithic property, but one that depends on clinical specialty and question type due to shifts in calibration and discrimination. Our results highlight the need to select or ensemble models based on their distinct, complementary strengths and clinical use.
♻ ☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
♻ ☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
♻ ☆ Optimizing Class-Level Probability Reweighting Coefficients for Equitable Prompting Accuracy
Even as we engineer LLMs for alignment and safety, they often uncover biases from pre-training data's statistical regularities (from disproportionate co-occurrences to stereotypical associations mirroring human cognitive biases). This leads to persistent, uneven class accuracy in classification and QA. Such per-class accuracy disparities are not inherently resolved by architectural/training evolutions or data scaling, making post-hoc correction essential for equitable performance. To mitigate LLM class accuracy imbalance, we develop a post-hoc probability reweighting method that directly optimizes for non-differentiable performance-driven and fairness-aligned metrics, through a novel COBias metric that highlights disparities in class accuracies. This post-hoc bias mitigation method is grounded in discrete optimization with nonlinear integer programming (NIP) objectives and an efficient metaheuristic solution framework with theoretical convergence guarantees. Operating model-agnostically, it learns reweighting coefficients from output class probabilities to adjust LLM inference outputs without internal weight updates. Evaluations demonstrate its effectiveness: reducing COBias (61% relative reduction), increasing overall accuracy (18% relative increase), and achieving robust within-task generalization across diverse prompt configurations.
♻ ☆ AIOS: LLM Agent Operating System
LLM-based intelligent agents face significant deployment challenges, particularly related to resource management. Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and resource management mechanisms in current agent designs hinders concurrent processing and limits overall system efficiency. To address these challenges, this paper proposes the architecture of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management, memory management, storage management, access control) for runtime agents. To enhance usability, AIOS also includes an AIOS SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1x faster execution for serving agents built by various agent frameworks. The source code is available at https://github.com/agiresearch/AIOS.
comment: Published as a full paper at COLM 2025
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ TurboBias: Universal ASR Context-Biasing powered by GPU-accelerated Phrase-Boosting Tree
Recognizing specific key phrases is an essential task for contextualized Automatic Speech Recognition (ASR). However, most existing context-biasing approaches have limitations associated with the necessity of additional model training, significantly slow down the decoding process, or constrain the choice of the ASR system type. This paper proposes a universal ASR context-biasing framework that supports all major types: CTC, Transducers, and Attention Encoder-Decoder models. The framework is based on a GPU-accelerated word boosting tree, which enables it to be used in shallow fusion mode for greedy and beam search decoding without noticeable speed degradation, even with a vast number of key phrases (up to 20K items). The obtained results showed high efficiency of the proposed method, surpassing the considered open-source context-biasing approaches in accuracy and decoding speed. Our context-biasing framework is open-sourced as a part of the NeMo toolkit.
comment: Accepted to ASRU 2025
♻ ☆ EvoP: Robust LLM Inference via Evolutionary Pruning
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, but their massive size and computational demands hinder their deployment in resource-constrained environments. Existing model pruning methods address this issue by removing redundant structures (e.g., elements, channels, layers) from the model. However, these methods employ a heuristic pruning strategy, which leads to suboptimal performance. Besides, they also ignore the data characteristics when pruning the model. To overcome these limitations, we propose EvoP, an evolutionary pruning framework for robust LLM inference. EvoP first presents a cluster-based calibration dataset sampling (CCDS) strategy for creating a more diverse calibration dataset. EvoP then introduces an evolutionary pruning pattern searching (EPPS) method to find the optimal pruning pattern. Compared to existing model pruning techniques, EvoP achieves the best performance while maintaining the best efficiency. Experiments across different LLMs and different downstream tasks validate the effectiveness of the proposed EvoP, making it a practical and scalable solution for deploying LLMs in real-world applications.
♻ ☆ Jinx: Unlimited LLMs for Probing Alignment Failures
Unlimited, or so-called helpful-only language models are trained without safety alignment constraints and never refuse user queries. They are widely used by leading AI companies as internal tools for red teaming and alignment evaluation. For example, if a safety-aligned model produces harmful outputs similar to an unlimited model, this indicates alignment failures that require further attention. Despite their essential role in assessing alignment, such models are not available to the research community. We introduce Jinx, a helpful-only variant of popular open-weight LLMs. Jinx responds to all queries without refusals or safety filtering, while preserving the base model's capabilities in reasoning and instruction following. It provides researchers with an accessible tool for probing alignment failures, evaluating safety boundaries, and systematically studying failure modes in language model safety.
comment: https://huggingface.co/Jinx-org
♻ ☆ AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
As Large Language Models (LLMs) are pre-trained on ultra-large-scale corpora, the problem of data contamination is becoming increasingly serious, and there is a risk that static evaluation benchmarks overestimate the performance of LLMs. To address this, this paper proposes a dynamic data evaluation method called AdEval (Alignment-based Dynamic Evaluation). AdEval first extracts knowledge points and main ideas from static datasets to achieve dynamic alignment with the core content of static benchmarks, and by avoiding direct reliance on static datasets, it inherently reduces the risk of data contamination from the source. It then obtains background information through online searches to generate detailed descriptions of the knowledge points. Finally, it designs questions based on Bloom's cognitive hierarchy across six dimensions-remembering, understanding, applying, analyzing, evaluating, and creating to enable multi-level cognitive assessment. Additionally, AdEval controls the complexity of dynamically generated datasets through iterative question reconstruction. Experimental results on multiple datasets show that AdEval effectively alleviates the impact of data contamination on evaluation results, solves the problems of insufficient complexity control and single-dimensional evaluation, and improves the fairness, reliability and diversity of LLMs evaluation.
comment: There are serious academic problems in this paper, such as data falsification and plagiarism in the method of the paper
♻ ☆ Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro
comment: 16 pages
♻ ☆ Quantifying Gender Biases Towards Politicians on Reddit
Despite attempts to increase gender parity in politics, global efforts have struggled to ensure equal female representation. This is likely tied to implicit gender biases against women in authority. In this work, we present a comprehensive study of gender biases that appear in online political discussion. To this end, we collect 10 million comments on Reddit in conversations about male and female politicians, which enables an exhaustive study of automatic gender bias detection. We address not only misogynistic language, but also other manifestations of bias, like benevolent sexism in the form of seemingly positive sentiment and dominance attributed to female politicians, or differences in descriptor attribution. Finally, we conduct a multi-faceted study of gender bias towards politicians investigating both linguistic and extra-linguistic cues. We assess 5 different types of gender bias, evaluating coverage, combinatorial, nominal, sentimental, and lexical biases extant in social media language and discourse. Overall, we find that, contrary to previous research, coverage and sentiment biases suggest equal public interest in female politicians. Rather than overt hostile or benevolent sexism, the results of the nominal and lexical analyses suggest this interest is not as professional or respectful as that expressed about male politicians. Female politicians are often named by their first names and are described in relation to their body, clothing, or family; this is a treatment that is not similarly extended to men. On the now banned far-right subreddits, this disparity is greatest, though differences in gender biases still appear in the right and left-leaning subreddits. We release the curated dataset to the public for future studies.
comment: PlosONE article
♻ ☆ Post-Completion Learning for Language Models
Current language model training paradigms typically terminate learning upon reaching the end-of-sequence () token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
♻ ☆ A Novel Evaluation Benchmark for Medical LLMs: Illuminating Safety and Effectiveness in Clinical Domains
Large language models (LLMs) hold promise in clinical decision support but face major challenges in safety evaluation and effectiveness validation. We developed the Clinical Safety-Effectiveness Dual-Track Benchmark (CSEDB), a multidimensional framework built on clinical expert consensus, encompassing 30 criteria covering critical areas like critical illness recognition, guideline adherence, and medication safety, with weighted consequence measures. Thirty-two specialist physicians developed and reviewed 2,069 open-ended Q\&A items aligned with these criteria, spanning 26 clinical departments to simulate real-world scenarios. Benchmark testing of six LLMs revealed moderate overall performance (average total score 57.2\%, safety 54.7\%, effectiveness 62.3\%), with a significant 13.3\% performance drop in high-risk scenarios (p $<$ 0.0001). Domain-specific medical LLMs showed consistent performance advantages over general-purpose models, with relatively higher top scores in safety (0.912) and effectiveness (0.861). The findings of this study not only provide a standardized metric for evaluating the clinical application of medical LLMs, facilitating comparative analyses, risk exposure identification, and improvement directions across different scenarios, but also hold the potential to promote safer and more effective deployment of large language models in healthcare environments.
♻ ☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: Project page: https://iv.ee.hm.edu/contextmotionclip/; This work has been submitted to the IEEE for possible publication
♻ ☆ A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Graph-based Retrieval-Augmented Generation (GraphRAG) has recently emerged as a promising paradigm for enhancing large language models (LLMs) by converting raw text into structured knowledge graphs, improving both accuracy and explainability. However, GraphRAG relies on LLMs to extract knowledge from raw text during graph construction, and this process can be maliciously manipulated to implant misleading information. Targeting this attack surface, we propose two knowledge poisoning attacks (KPAs) and demonstrate that modifying only a few words in the source text can significantly change the constructed graph, poison the GraphRAG, and severely mislead downstream reasoning. The first attack, named Targeted KPA (TKPA), utilizes graph-theoretic analysis to locate vulnerable nodes in the generated graphs and rewrites the corresponding narratives with LLMs, achieving precise control over specific question-answering (QA) outcomes with a success rate of 93.1\%, while keeping the poisoned text fluent and natural. The second attack, named Universal KPA (UKPA), exploits linguistic cues such as pronouns and dependency relations to disrupt the structural integrity of the generated graph by altering globally influential words. With fewer than 0.05\% of full text modified, the QA accuracy collapses from 95\% to 50\%. Furthermore, experiments show that state-of-the-art defense methods fail to detect these attacks, highlighting that securing GraphRAG pipelines against knowledge poisoning remains largely unexplored.
♻ ☆ Unsupervised Document and Template Clustering using Multimodal Embeddings
This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to clustering algorithms such as $k$-Means, DBSCAN, a combination of HDBSCAN and $k$-NN, and BIRCH. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pre-trained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, ColPali, Gemma3, and InternVL3. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
comment: 22 pages, 12 figures
♻ ☆ From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models
Hallucinations in large vision-language models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input, which impairs their reliability. Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to effectively extract or decouple visual features. In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling). Motivated by our findings on the preliminary investigation, we propose a novel tuning strategy, PATCH, to mitigate hallucinations in LVLMs. This plug-and-play method can be integrated into various LVLMs, utilizing adaptive virtual tokens to extract object features from bounding boxes, thereby addressing hallucinations caused by insufficient decoupling of visual features. PATCH achieves state-of-the-art performance on multiple multi-modal hallucination datasets. We hope this approach provides researchers with deeper insights into the underlying causes of hallucinations in LVLMs, fostering further advancements and innovation in this field.
♻ ☆ Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
comment: 8 figures, 4 tables
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ BriLLM: Brain-inspired Large Language Model
We present BriLLM, a brain-inspired large language model that fundamentally reimagines machine learning foundations through Signal Fully-connected flowing (SiFu) learning. Addressing core limitations in Transformer-based models including black-box opacity, quadratic complexity, and context-length dependency, BriLLM incorporates two key neurocognitive principles: first, static semantic mapping where tokens map to specialized nodes analogous to cortical regions, and second, dynamic signal propagation simulating electrophysiological information flow. This architecture enables three breakthroughs: full model interpretability, context-length independent scaling, and the first global-scale simulation of brain-like processing. Initial 1 to 2B parameter models demonstrate GPT-1-level generative capabilities with stable perplexity reduction. Scalability analyses confirm feasibility of 100 to 200B parameter variants processing 40,000-token contexts. BriLLM establishes a new paradigm for biologically grounded AGI development.
♻ ☆ Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.
♻ ☆ Marco-Voice Technical Report
This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively.
comment: Technical Report. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively
♻ ☆ Audio-Thinker: Guiding Audio Language Model When and How to Think via Reinforcement Learning
Recent advancements in large language models, multimodal large language models, and large audio language models (LALMs) have significantly improved their reasoning capabilities through reinforcement learning with rule-based rewards. However, the explicit reasoning process has yet to show significant benefits for audio question answering, and effectively leveraging deep reasoning remains an open challenge, with LALMs still falling short of human-level auditory-language reasoning. To address these limitations, we propose Audio-Thinker, a reinforcement learning framework designed to enhance the reasoning capabilities of LALMs, with a focus on improving adaptability, consistency, and effectiveness. Our approach introduces an adaptive think accuracy reward, enabling the model to adjust its reasoning strategies based on task complexity dynamically. Furthermore, we incorporate an external reward model to evaluate the overall consistency and quality of the reasoning process, complemented by think-based rewards that help the model distinguish between valid and flawed reasoning paths during training. Experimental results demonstrate that our Audio-Thinker model outperforms existing reasoning-oriented LALMs across various benchmark tasks, exhibiting superior reasoning and generalization capabilities.
comment: preprint
♻ ☆ DYNARTmo: A Dynamic Articulatory Model for Visualization of Speech Movement Patterns
We present DYNARTmo, a dynamic articulatory model designed to visualize speech articulation processes in a two-dimensional midsagittal plane. The model builds upon the UK-DYNAMO framework and integrates principles of articulatory underspecification, segmental and gestural control, and coarticulation. DYNARTmo simulates six key articulators based on ten continuous and six discrete control parameters, allowing for the generation of both vocalic and consonantal articulatory configurations. The current implementation is embedded in a web-based application (SpeechArticulationTrainer) that includes sagittal, glottal, and palatal views, making it suitable for use in phonetics education and speech therapy. While this paper focuses on the static modeling aspects, future work will address dynamic movement generation and integration with articulatory-acoustic modules.
comment: 10 pages, 29 references, 2 figures, supplementary material. V2: Discussion of the tongue-palate contact pattern for /t/. V3: table 2: "lateral" added
♻ ☆ Grounding Multilingual Multimodal LLMs With Cultural Knowledge
Multimodal Large Language Models excel in high-resource settings, but often misinterpret long-tail cultural entities and underperform in low-resource languages. To address this gap, we propose a data-centric approach that directly grounds MLLMs in cultural knowledge. Leveraging a large scale knowledge graph from Wikidata, we collect images that represent culturally significant entities, and generate synthetic multilingual visual question answering data. The resulting dataset, CulturalGround, comprises 22 million high-quality, culturally-rich VQA pairs spanning 42 countries and 39 languages. We train an open-source MLLM CulturalPangea on CulturalGround, interleaving standard multilingual instruction-tuning data to preserve general abilities. CulturalPangea achieves state-of-the-art performance among open models on various culture-focused multilingual multimodal benchmarks, outperforming prior models by an average of 5.0 without degrading results on mainstream vision-language tasks. Our findings show that our targeted, culturally grounded approach could substantially narrow the cultural gap in MLLMs and offer a practical path towards globally inclusive multimodal systems.
♻ ☆ REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.
comment: 17 pages, 4 figures; updated references
♻ ☆ Decoding-based Regression
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.
comment: Published in Transactions on Machine Learning Research (TMLR) 2025. Code can be found at https://github.com/google-research/optformer/tree/main/optformer/decoding_regression
♻ ☆ AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.
comment: https://github.com/hlxtsyj/AMFT
♻ ☆ Reasoning with Exploration: An Entropy Perspective on Reinforcement Learning for LLMs
Balancing exploration and exploitation is a central goal in reinforcement learning (RL). Despite recent advances in enhancing large language model (LLM) reasoning, most methods lean toward exploitation, and increasingly encounter performance plateaus. In this work, we revisit entropy -- a signal of exploration in RL -- and examine its relationship to exploratory reasoning in LLMs. Through empirical analysis, we uncover positive correlations between high-entropy regions and three types of exploratory reasoning actions: (1) pivotal tokens that determine or connect logical steps, (2) reflective actions such as self-verification and correction, and (3) rare behaviors under-explored by the base LLMs. Motivated by this, we introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term. Unlike traditional maximum-entropy methods which encourage exploration by promoting uncertainty, we encourage exploration by promoting longer and deeper reasoning chains. Notably, our method achieves significant gains on the Pass@K metric -- an upper-bound estimator of LLM reasoning capabilities -- even when evaluated with extremely large K values, pushing the boundaries of LLM reasoning.
♻ ☆ Do Biased Models Have Biased Thoughts?
The impressive performance of language models is undeniable. However, the presence of biases based on gender, race, socio-economic status, physical appearance, and sexual orientation makes the deployment of language models challenging. This paper studies the effect of chain-of-thought prompting, a recent approach that studies the steps followed by the model before it responds, on fairness. More specifically, we ask the following question: $\textit{Do biased models have biased thoughts}$? To answer our question, we conduct experiments on $5$ popular large language models using fairness metrics to quantify $11$ different biases in the model's thoughts and output. Our results show that the bias in the thinking steps is not highly correlated with the output bias (less than $0.6$ correlation with a $p$-value smaller than $0.001$ in most cases). In other words, unlike human beings, the tested models with biased decisions do not always possess biased thoughts.
comment: Accepted at main track of the Second Conference on Language Modeling (COLM 2025)
♻ ☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual data extraction can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis. We generated synthetic contracts using the real-world transaction dataset, thereby fine-tuning the large-language model and achieving significant metrics improvements and qualitative improvements in information retrieval and reasoning tasks.
♻ ☆ WSI-LLaVA: A Multimodal Large Language Model for Whole Slide Image ICCV 2025
Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.
comment: ICCV 2025, 38 pages, 22 figures, 35 tables
♻ ☆ LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
♻ ☆ ChatBench: From Static Benchmarks to Human-AI Evaluation ACL 2025
With the rapid adoption of LLM-based chatbots, there is a pressing need to evaluate what humans and LLMs can achieve together. However, standard benchmarks, such as MMLU, measure LLM capabilities in isolation (i.e., "AI-alone"). Here, we design and conduct a user study to convert MMLU questions into user-AI conversations, by seeding the user with the question and having them carry out a conversation with the LLM to answer their question. We release ChatBench, a new dataset with AI-alone, user-alone, and user-AI data for 396 questions and two LLMs, including 144K answers and 7,336 user-AI conversations. We find that AI-alone accuracy fails to predict user-AI accuracy, with significant differences across multiple subjects (math, physics, and moral reasoning), and we analyze the user-AI conversations to provide insight into how they diverge from AI-alone benchmarks. Finally, we show that fine-tuning a user simulator on a subset of ChatBench improves its ability to estimate user-AI accuracies, increasing correlation on held-out questions by more than 20 points, creating possibilities for scaling interactive evaluation.
comment: ACL 2025 (main)
♻ ☆ Task Diversity Shortens the ICL Plateau
In-context learning (ICL) describes a language model's ability to generate outputs based on a set of input demonstrations and a subsequent query. To understand this remarkable capability, researchers have studied simplified, stylized models. These studies have consistently observed long loss plateaus, during which models exhibit minimal improvement, followed by a sudden, rapid surge of learning. In this work, we reveal that training on multiple diverse ICL tasks simultaneously shortens the loss plateaus, making each task easier to learn. This finding is surprising as it contradicts the natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it. Our result suggests that the recent success in large-scale training of language models may be attributed not only to the richness of the data at scale but also to the easier optimization (training) induced by the diversity of natural language training data.
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
Information Retrieval 16
☆ Link Prediction for Event Logs in the Process Industry
Knowledge management (KM) is vital in the process industry for optimizing operations, ensuring safety, and enabling continuous improvement through effective use of operational data and past insights. A key challenge in this domain is the fragmented nature of event logs in shift books, where related records, e.g., entries documenting issues related to equipment or processes and the corresponding solutions, may remain disconnected. This fragmentation hinders the recommendation of previous solutions to the users. To address this problem, we investigate record linking (RL) as link prediction, commonly studied in graph-based machine learning, by framing it as a cross-document coreference resolution (CDCR) task enhanced with natural language inference (NLI) and semantic text similarity (STS) by shifting it into the causal inference (CI). We adapt CDCR, traditionally applied in the news domain, into an RL model to operate at the passage level, similar to NLI and STS, while accommodating the process industry's specific text formats, which contain unstructured text and structured record attributes. Our RL model outperformed the best versions of NLI- and STS-driven baselines by 28% (11.43 points) and 27% (11.21 points), respectively. Our work demonstrates how domain adaptation of the state-of-the-art CDCR models, enhanced with reasoning capabilities, can be effectively tailored to the process industry, improving data quality and connectivity in shift logs.
☆ SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Modeling multi-interests has arisen as a core problem in real-world RS. Current multi-interest retrieval methods pose three major challenges: 1) Interests, typically extracted from predefined external knowledge, are invariant. Failed to dynamically evolve with users' real-time consumption preferences. 2) Online inference typically employs an over-exploited strategy, mainly matching users' existing interests, lacking proactive exploration and discovery of novel and long-tail interests. To address these challenges, we propose a novel retrieval framework named SPARC(Soft Probabilistic Adaptive Retrieval Model via Codebooks). Our contribution is two folds. First, the framework utilizes Residual Quantized Variational Autoencoder (RQ-VAE) to construct a discretized interest space. It achieves joint training of the RQ-VAE with the industrial large scale recommendation model, mining behavior-aware interests that can perceive user feedback and evolve dynamically. Secondly, a probabilistic interest module that predicts the probability distribution over the entire dynamic and discrete interest space. This facilitates an efficient "soft-search" strategy during online inference, revolutionizing the retrieval paradigm from "passive matching" to "proactive exploration" and thereby effectively promoting interest discovery. Online A/B tests on an industrial platform with tens of millions daily active users, have achieved substantial gains in business metrics: +0.9% increase in user view duration, +0.4% increase in user page views (PV), and a +22.7% improvement in PV500(new content reaching 500 PVs in 24 hours). Offline evaluations are conducted on open-source Amazon Product datasets. Metrics, such as Recall@K and Normalized Discounted Cumulative Gain@K(NDCG@K), also showed consistent improvement. Both online and offline experiments validate the efficacy and practical value of the proposed method.
comment: 8 pages
☆ Mitigating Popularity Bias in Counterfactual Explanations using Large Language Models
Counterfactual explanations (CFEs) offer a tangible and actionable way to explain recommendations by showing users a "what-if" scenario that demonstrates how small changes in their history would alter the system's output. However, existing CFE methods are susceptible to bias, generating explanations that might misalign with the user's actual preferences. In this paper, we propose a pre-processing step that leverages large language models to filter out-of-character history items before generating an explanation. In experiments on two public datasets, we focus on popularity bias and apply our approach to ACCENT, a neural CFE framework. We find that it creates counterfactuals that are more closely aligned with each user's popularity preferences than ACCENT alone.
☆ Jointly Generating and Attributing Answers using Logits of Document-Identifier Tokens
Despite their impressive performances, Large Language Models (LLMs) remain prone to hallucination, which critically undermines their trustworthiness. While most of the previous work focused on tackling answer and attribution correctness, a recent line of work investigated faithfulness, with a focus on leveraging internal model signals to reflect a model's actual decision-making process while generating the answer. Nevertheless, these methods induce additional latency and have shown limitations in directly aligning token generation with attribution generation. In this paper, we introduce LoDIT, a method that jointly generates and faithfully attributes answers in RAG by leveraging specific token logits during generation. It consists of two steps: (1) marking the documents with specific token identifiers and then leveraging the logits of these tokens to estimate the contribution of each document to the answer during generation, and (2) aggregating these contributions into document attributions. Experiments on a trustworthiness-focused attributed text-generation benchmark, Trust-Align, show that LoDIT significantly outperforms state-of-the-art models on several metrics. Finally, an in-depth analysis of LoDIT shows both its efficiency in terms of latency and its robustness in different settings.
☆ Recent Advances and Trends in Research Paper Recommender Systems: A Comprehensive Survey
As the volume of scientific publications grows exponentially, researchers increasingly face difficulties in locating relevant literature. Research Paper Recommender Systems have become vital tools to mitigate this information overload by delivering personalized suggestions. This survey provides a comprehensive analysis of Research Paper Recommender Systems developed between November 2021 and December 2024, building upon prior reviews in the field. It presents an extensive overview of the techniques and approaches employed, the datasets utilized, the evaluation metrics and procedures applied, and the status of both enduring and emerging challenges observed during the research. Unlike prior surveys, this survey goes beyond merely cataloguing techniques and models, providing a thorough examination of how these methods are implemented across different stages of the recommendation process. By furnishing a detailed and structured reference, this work aims to function as a consultative resource for the research community, supporting informed decision-making and guiding future investigations in the advances of effective Research Paper Recommender Systems.
☆ Evaluating Podcast Recommendations with Profile-Aware LLM-as-a-Judge RecSys '25
Evaluating personalized recommendations remains a central challenge, especially in long-form audio domains like podcasts, where traditional offline metrics suffer from exposure bias and online methods such as A/B testing are costly and operationally constrained. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) as offline judges to assess the quality of podcast recommendations in a scalable and interpretable manner. Our two-stage profile-aware approach first constructs natural-language user profiles distilled from 90 days of listening history. These profiles summarize both topical interests and behavioral patterns, serving as compact, interpretable representations of user preferences. Rather than prompting the LLM with raw data, we use these profiles to provide high-level, semantically rich context-enabling the LLM to reason more effectively about alignment between a user's interests and recommended episodes. This reduces input complexity and improves interpretability. The LLM is then prompted to deliver fine-grained pointwise and pairwise judgments based on the profile-episode match. In a controlled study with 47 participants, our profile-aware judge matched human judgments with high fidelity and outperformed or matched a variant using raw listening histories. The framework enables efficient, profile-aware evaluation for iterative testing and model selection in recommender systems.
comment: Accepted at RecSys '25
☆ Comprehensive Comparison Network: a framework for locality-aware, routes-comparable and interpretable route recommendation
Route recommendation (RR) is a core task of route planning in the Amap app, with the goal of recommending the optimal route among candidate routes to users. Unlike traditional recommendation methods, insights into the local quality of routes and comparisons between candidate routes are crucial for enhancing recommendation performance but often overlooked in previous studies. To achieve these, we propose a novel model called Comprehensive Comparison Network (CCN). CCN not only uses query-level features (e.g. user features) and item-level features (e.g. route features, item embedding) that are common in traditional recommendations, but also introduces comparison-level features which describe the non-overlapping segments between different routes to capture the local quality of routes. The key component Comprehensive Comparison Block (CCB) in CCN is designed to enable comparisons between routes. CCB includes a Comprehensive Comparison Operator (CCO) and a multi-scenario MLP, which can update the representations of candidate routes based on a comprehensive comparison. By stacking multiple CCBs, CCN can determine the final scores of candidate routes and recommend the optimal one to the user. Additionally, since routes directly affect the costs and risks experienced by users, the RR model must be interpretable for online deployment. Therefore, we designed an interpretable pair scoring network to achieve interpretability. Both offline and online experiments demonstrate that CCN significantly improves RR performance and exhibits strong interpretability. CCN has been fully deployed in the Amap app for over a year, providing stable and optimal benefits for route recommendations.
☆ Eat your own KR: a KR-based approach to index Semantic Web Endpoints and Knowledge Graphs
Over the last decade, knowledge graphs have multiplied, grown, and evolved on the World Wide Web, and the advent of new standards, vocabularies, and application domains has accelerated this trend. IndeGx is a framework leveraging an extensible base of rules to index the content of KGs and the capacities of their SPARQL endpoints. In this article, we show how knowledge representation (KR) and reasoning methods and techniques can be used in a reflexive manner to index and characterize existing knowledge graphs (KG) with respect to their usage of KR methods and techniques. We extended IndeGx with a fully ontology-oriented modeling and processing approach to do so. Using SPARQL rules and an OWL RL ontology of the indexing domain, IndeGx can now build and reason over an index of the contents and characteristics of an open collection of public knowledge graphs. Our extension of the framework relies on a declarative representation of procedural knowledge and collaborative environments (e.g., GitHub) to provide an agile, customizable, and expressive KR approach for building and maintaining such an index of knowledge graphs in the wild. In doing so, we help anyone answer the question of what knowledge is out there in the world wild Semantic Web in general, and we also help our community monitor which KR research results are used in practice. In particular, this article provides a snapshot of the state of the Semantic Web regarding supported standard languages, ontology usage, and diverse quality evaluations by applying this method to a collection of over 300 open knowledge graph endpoints.
☆ Expert-Guided Diffusion Planner for Auto-bidding CIKM 2025
Auto-bidding is extensively applied in advertising systems, serving a multitude of advertisers. Generative bidding is gradually gaining traction due to its robust planning capabilities and generalizability. In contrast to traditional reinforcement learning-based bidding, generative bidding does not rely on the Markov Decision Process (MDP) exhibiting superior planning capabilities in long-horizon scenarios. Conditional diffusion modeling approaches have demonstrated significant potential in the realm of auto-bidding. However, relying solely on return as the optimality condition is weak to guarantee the generation of genuinely optimal decision sequences, lacking personalized structural information. Moreover, diffusion models' t-step autoregressive generation mechanism inherently carries timeliness risks. To address these issues, we propose a novel conditional diffusion modeling method based on expert trajectory guidance combined with a skip-step sampling strategy to enhance generation efficiency. We have validated the effectiveness of this approach through extensive offline experiments and achieved statistically significant results in online A/B testing, achieving an increase of 11.29% in conversion and a 12.35% in revenue compared with the baseline.
comment: accepted for presentation at the CIKM 2025 Applied Research Track, eight (8) pages, three (3) figures
☆ Adaptive Personalized Conversational Information Retrieval CIKM 2025
Personalized conversational information retrieval (CIR) systems aim to satisfy users' complex information needs through multi-turn interactions by considering user profiles. However, not all search queries require personalization. The challenge lies in appropriately incorporating personalization elements into search when needed. Most existing studies implicitly incorporate users' personal information and conversational context using large language models without distinguishing the specific requirements for each query turn. Such a ``one-size-fits-all'' personalization strategy might lead to sub-optimal results. In this paper, we propose an adaptive personalization method, in which we first identify the required personalization level for a query and integrate personalized queries with other query reformulations to produce various enhanced queries. Then, we design a personalization-aware ranking fusion approach to assign fusion weights dynamically to different reformulated queries, depending on the required personalization level. The proposed adaptive personalized conversational information retrieval framework APCIR is evaluated on two TREC iKAT datasets. The results confirm the effectiveness of adaptive personalization of APCIR by outperforming state-of-the-art methods.
comment: Accepted by CIKM 2025
♻ ☆ Efficient and Effective Query Context-Aware Learning-to-Rank Model for Sequential Recommendation
Modern sequential recommender systems commonly use transformer-based models for next-item prediction. While these models demonstrate a strong balance between efficiency and quality, integrating interleaving features - such as the query context (e.g., browse category) under which next-item interactions occur - poses challenges. Effectively capturing query context is crucial for refining ranking relevance and enhancing user engagement, as it provides valuable signals about user intent within a session. Unlike item features, historical query context is typically not aligned with item sequences and may be unavailable at inference due to privacy constraints or feature store limitations - making its integration into transformers both challenging and error-prone. This paper analyzes different strategies for incorporating query context into transformers trained with a causal language modeling procedure as a case study. We propose a new method that effectively fuses the item sequence with query context within the attention mechanism. Through extensive offline and online experiments on a large-scale online platform and open datasets, we present evidence that our proposed method is an effective approach for integrating query context to improve model ranking quality in terms of relevance and diversity.
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
♻ ☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55 in the non-human evaluation, placing it overall in third place in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 6 figures. Report for SIGIR 2025 LiveRAG Challenge
♻ ☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: Project page: https://iv.ee.hm.edu/contextmotionclip/; This work has been submitted to the IEEE for possible publication
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual data extraction can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis. We generated synthetic contracts using the real-world transaction dataset, thereby fine-tuning the large-language model and achieving significant metrics improvements and qualitative improvements in information retrieval and reasoning tasks.
Computation and Language 110
☆ Jinx: Unlimited LLMs for Probing Alignment Failures
Unlimited, or so-called helpful-only language models are trained without safety alignment constraints and never refuse user queries. They are widely used by leading AI companies as internal tools for red teaming and alignment evaluation. For example, if a safety-aligned model produces harmful outputs similar to an unlimited model, this indicates alignment failures that require further attention. Despite their essential role in assessing alignment, such models are not available to the research community. We introduce Jinx, a helpful-only variant of popular open-weight LLMs. Jinx responds to all queries without refusals or safety filtering, while preserving the base model's capabilities in reasoning and instruction following. It provides researchers with an accessible tool for probing alignment failures, evaluating safety boundaries, and systematically studying failure modes in language model safety.
comment: https://huggingface.co/Jinx-org
☆ Exploring Safety Alignment Evaluation of LLMs in Chinese Mental Health Dialogues via LLM-as-Judge
Evaluating the safety alignment of LLM responses in high-risk mental health dialogues is particularly difficult due to missing gold-standard answers and the ethically sensitive nature of these interactions. To address this challenge, we propose PsyCrisis-Bench, a reference-free evaluation benchmark based on real-world Chinese mental health dialogues. It evaluates whether the model responses align with the safety principles defined by experts. Specifically designed for settings without standard references, our method adopts a prompt-based LLM-as-Judge approach that conducts in-context evaluation using expert-defined reasoning chains grounded in psychological intervention principles. We employ binary point-wise scoring across multiple safety dimensions to enhance the explainability and traceability of the evaluation. Additionally, we present a manually curated, high-quality Chinese-language dataset covering self-harm, suicidal ideation, and existential distress, derived from real-world online discourse. Experiments on 3600 judgments show that our method achieves the highest agreement with expert assessments and produces more interpretable evaluation rationales compared to existing approaches. Our dataset and evaluation tool are publicly available to facilitate further research.
☆ Capabilities of GPT-5 on Multimodal Medical Reasoning
Recent advances in large language models (LLMs) have enabled general-purpose systems to perform increasingly complex domain-specific reasoning without extensive fine-tuning. In the medical domain, decision-making often requires integrating heterogeneous information sources, including patient narratives, structured data, and medical images. This study positions GPT-5 as a generalist multimodal reasoner for medical decision support and systematically evaluates its zero-shot chain-of-thought reasoning performance on both text-based question answering and visual question answering tasks under a unified protocol. We benchmark GPT-5, GPT-5-mini, GPT-5-nano, and GPT-4o-2024-11-20 against standardized splits of MedQA, MedXpertQA (text and multimodal), MMLU medical subsets, USMLE self-assessment exams, and VQA-RAD. Results show that GPT-5 consistently outperforms all baselines, achieving state-of-the-art accuracy across all QA benchmarks and delivering substantial gains in multimodal reasoning. On MedXpertQA MM, GPT-5 improves reasoning and understanding scores by +29.62% and +36.18% over GPT-4o, respectively, and surpasses pre-licensed human experts by +24.23% in reasoning and +29.40% in understanding. In contrast, GPT-4o remains below human expert performance in most dimensions. A representative case study demonstrates GPT-5's ability to integrate visual and textual cues into a coherent diagnostic reasoning chain, recommending appropriate high-stakes interventions. Our results show that, on these controlled multimodal reasoning benchmarks, GPT-5 moves from human-comparable to above human-expert performance. This improvement may substantially inform the design of future clinical decision-support systems.
☆ Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning
Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.
comment: 26 pages, 21 figures
☆ SAEMark: Multi-bit LLM Watermarking with Inference-Time Scaling
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.
comment: 24 pages, 12 figures, code available: https://zhuohaoyu.github.io/SAEMark
☆ Human-Alignment and Calibration of Inference-Time Uncertainty in Large Language Models
There has been much recent interest in evaluating large language models for uncertainty calibration to facilitate model control and modulate user trust. Inference time uncertainty, which may provide a real-time signal to the model or external control modules, is particularly important for applying these concepts to improve LLM-user experience in practice. While many of the existing papers consider model calibration, comparatively little work has sought to evaluate how closely model uncertainty aligns to human uncertainty. In this work, we evaluate a collection of inference-time uncertainty measures, using both established metrics and novel variations, to determine how closely they align with both human group-level uncertainty and traditional notions of model calibration. We find that numerous measures show evidence of strong alignment to human uncertainty, even despite the lack of alignment to human answer preference. For those successful metrics, we find moderate to strong evidence of model calibration in terms of both correctness correlation and distributional analysis.
comment: preprint, under review
☆ Efficient Speculative Decoding for Llama at Scale: Challenges and Solutions
Speculative decoding is a standard method for accelerating the inference speed of large language models. However, scaling it for production environments poses several engineering challenges, including efficiently implementing different operations (e.g., tree attention and multi-round speculative decoding) on GPU. In this paper, we detail the training and inference optimization techniques that we have implemented to enable EAGLE-based speculative decoding at a production scale for Llama models. With these changes, we achieve a new state-of-the-art inference latency for Llama models. For example, Llama4 Maverick decodes at a speed of about 4 ms per token (with a batch size of one) on 8 NVIDIA H100 GPUs, which is 10% faster than the previously best known method. Furthermore, for EAGLE-based speculative decoding, our optimizations enable us to achieve a speed-up for large batch sizes between 1.4x and 2.0x at production scale.
comment: 15 pages
☆ LPI-RIT at LeWiDi-2025: Improving Distributional Predictions via Metadata and Loss Reweighting with DisCo
The Learning With Disagreements (LeWiDi) 2025 shared task is to model annotator disagreement through soft label distribution prediction and perspectivist evaluation, modeling annotators. We adapt DisCo (Distribution from Context), a neural architecture that jointly models item-level and annotator-level label distributions, and present detailed analysis and improvements. In this paper, we extend the DisCo by incorporating annotator metadata, enhancing input representations, and modifying the loss functions to capture disagreement patterns better. Through extensive experiments, we demonstrate substantial improvements in both soft and perspectivist evaluation metrics across three datasets. We also conduct in-depth error and calibration analyses, highlighting the conditions under which improvements occur. Our findings underscore the value of disagreement-aware modeling and offer insights into how system components interact with the complexity of human-annotated data.
☆ REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.
comment: 17 pages, 4 figures
☆ Data-Efficient Biomedical In-Context Learning: A Diversity-Enhanced Submodular Perspective
Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.
☆ Can LLMs Detect Their Confabulations? Estimating Reliability in Uncertainty-Aware Language Models
Large Language Models (LLMs) are prone to generating fluent but incorrect content, known as confabulation, which poses increasing risks in multi-turn or agentic applications where outputs may be reused as context. In this work, we investigate how in-context information influences model behavior and whether LLMs can identify their unreliable responses. We propose a reliability estimation that leverages token-level uncertainty to guide the aggregation of internal model representations. Specifically, we compute aleatoric and epistemic uncertainty from output logits to identify salient tokens and aggregate their hidden states into compact representations for response-level reliability prediction. Through controlled experiments on open QA benchmarks, we find that correct in-context information improves both answer accuracy and model confidence, while misleading context often induces confidently incorrect responses, revealing a misalignment between uncertainty and correctness. Our probing-based method captures these shifts in model behavior and improves the detection of unreliable outputs across multiple open-source LLMs. These results underscore the limitations of direct uncertainty signals and highlight the potential of uncertainty-guided probing for reliability-aware generation.
☆ Optimal Transport Regularization for Speech Text Alignment in Spoken Language Models
Spoken Language Models (SLMs), which extend Large Language Models (LLMs) to perceive speech inputs, have gained increasing attention for their potential to advance speech understanding tasks. However, despite recent progress, studies show that SLMs often struggle to generalize across datasets, even for trained languages and tasks, raising concerns about whether they process speech in a text-like manner as intended. A key challenge underlying this limitation is the modality gap between speech and text representations. The high variability in speech embeddings may allow SLMs to achieve strong in-domain performance by exploiting unintended speech variations, ultimately hindering generalization. To mitigate this modality gap, we introduce Optimal Transport Regularization (OTReg), a method that formulates speech-text alignment as an optimal transport problem and derives a regularization loss to improve SLM training. In each training iteration, OTReg first establishes a structured correspondence between speech and transcript embeddings by determining the optimal transport plan, then incorporates the regularization loss based on this transport plan to optimize SLMs in generating speech embeddings that align more effectively with transcript embeddings. OTReg is lightweight, requiring no additional labels or learnable parameters, and integrates seamlessly into existing SLM training procedures. Extensive multilingual ASR experiments demonstrate that OTReg enhances speech-text alignment, mitigates the modality gap, and consequently improves SLM generalization across diverse datasets.
comment: To be presented at ACPR 2025 Conference
☆ Czech Dataset for Complex Aspect-Based Sentiment Analysis Tasks LREC
In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.
comment: Published In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Official version: https://aclanthology.org/2024.lrec-main.374/
☆ Iterative refinement, not training objective, makes HuBERT behave differently from wav2vec 2.0
Self-supervised models for speech representation learning now see widespread use for their versatility and performance on downstream tasks, but the effect of model architecture on the linguistic information learned in their representations remains under-studied. This study investigates two such models, HuBERT and wav2vec 2.0, and minimally compares two of their architectural differences: training objective and iterative pseudo-label refinement through multiple training iterations. We find that differences in canonical correlation of hidden representations to word identity, phoneme identity, and speaker identity are explained by training iteration, not training objective. We suggest that future work investigate the reason for the effectiveness of iterative refinement in encoding linguistic information in self-supervised speech representations.
comment: Proceedings of Interspeech 2025
☆ Assessing LLM Text Detection in Educational Contexts: Does Human Contribution Affect Detection?
Recent advancements in Large Language Models (LLMs) and their increased accessibility have made it easier than ever for students to automatically generate texts, posing new challenges for educational institutions. To enforce norms of academic integrity and ensure students' learning, learning analytics methods to automatically detect LLM-generated text appear increasingly appealing. This paper benchmarks the performance of different state-of-the-art detectors in educational contexts, introducing a novel dataset, called Generative Essay Detection in Education (GEDE), containing over 900 student-written essays and over 12,500 LLM-generated essays from various domains. To capture the diversity of LLM usage practices in generating text, we propose the concept of contribution levels, representing students' contribution to a given assignment. These levels range from purely human-written texts, to slightly LLM-improved versions, to fully LLM-generated texts, and finally to active attacks on the detector by "humanizing" generated texts. We show that most detectors struggle to accurately classify texts of intermediate student contribution levels, like LLM-improved human-written texts. Detectors are particularly likely to produce false positives, which is problematic in educational settings where false suspicions can severely impact students' lives. Our dataset, code, and additional supplementary materials are publicly available at https://github.com/lukasgehring/Assessing-LLM-Text-Detection-in-Educational-Contexts.
comment: Preprint as provided by the authors (19 pages, 12 figures, 9 tables)
☆ Dual Information Speech Language Models for Emotional Conversations ICME 2025
Conversational systems relying on text-based large language models (LLMs) often overlook paralinguistic cues, essential for understanding emotions and intentions. Speech-language models (SLMs), which use speech as input, are emerging as a promising solution. However, SLMs built by extending frozen LLMs struggle to capture paralinguistic information and exhibit reduced context understanding. We identify entangled information and improper training strategies as key issues. To address these issues, we propose two heterogeneous adapters and suggest a weakly supervised training strategy. Our approach disentangles paralinguistic and linguistic information, enabling SLMs to interpret speech through structured representations. It also preserves contextual understanding by avoiding the generation of task-specific vectors through controlled randomness. This approach trains only the adapters on common datasets, ensuring parameter and data efficiency. Experiments demonstrate competitive performance in emotional conversation tasks, showcasing the model's ability to effectively integrate both paralinguistic and linguistic information within contextual settings.
comment: Presented at IEEE ICME 2025
☆ HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.
comment: Code and datasets are available at https://github.com/plageon/HierSearch
☆ Investigating the Design Space of Visual Grounding in Multimodal Large Language Model
Fine-grained multimodal capability in Multimodal Large Language Models (MLLMs) has emerged as a critical research direction, particularly for tackling the visual grounding (VG) problem. Despite the strong performance achieved by existing approaches, they often employ disparate design choices when fine-tuning MLLMs for VG, lacking systematic verification to support these designs. To bridge this gap, this paper presents a comprehensive study of various design choices that impact the VG performance of MLLMs. We conduct our analysis using LLaVA-1.5, which has been widely adopted in prior empirical studies of MLLMs. While more recent models exist, we follow this convention to ensure our findings remain broadly applicable and extendable to other architectures. We cover two key aspects: (1) exploring different visual grounding paradigms in MLLMs, identifying the most effective design, and providing our insights; and (2) conducting ablation studies on the design of grounding data to optimize MLLMs' fine-tuning for the VG task. Finally, our findings contribute to a stronger MLLM for VG, achieving improvements of +5.6% / +6.9% / +7.0% on RefCOCO/+/g over the LLaVA-1.5.
comment: 8 pages for the main paper
☆ From Source to Target: Leveraging Transfer Learning for Predictive Process Monitoring in Organizations
Event logs reflect the behavior of business processes that are mapped in organizational information systems. Predictive process monitoring (PPM) transforms these data into value by creating process-related predictions that provide the insights required for proactive interventions at process runtime. Existing PPM techniques require sufficient amounts of event data or other relevant resources that might not be readily available, preventing some organizations from utilizing PPM. The transfer learning-based PPM technique presented in this paper allows organizations without suitable event data or other relevant resources to implement PPM for effective decision support. The technique is instantiated in two real-life use cases, based on which numerical experiments are performed using event logs for IT service management processes in an intra- and inter-organizational setting. The results of the experiments suggest that knowledge of one business process can be transferred to a similar business process in the same or a different organization to enable effective PPM in the target context. With the proposed technique, organizations can benefit from transfer learning in an intra- and inter-organizational setting, where resources like pre-trained models are transferred within and across organizational boundaries.
☆ 9th Workshop on Sign Language Translation and Avatar Technologies (SLTAT 2025)
The Sign Language Translation and Avatar Technology (SLTAT) workshops continue a series of gatherings to share recent advances in improving deaf / human communication through non-invasive means. This 2025 edition, the 9th since its first appearance in 2011, is hosted by the International Conference on Intelligent Virtual Agents (IVA), giving the opportunity for contamination between two research communities, using digital humans as either virtual interpreters or as interactive conversational agents. As presented in this summary paper, SLTAT sees contributions beyond avatar technologies, with a consistent number of submissions on sign language recognition, and other work on data collection, data analysis, tools, ethics, usability, and affective computing.
☆ Audio-Thinker: Guiding Audio Language Model When and How to Think via Reinforcement Learning
Recent advancements in large language models, multimodal large language models, and large audio language models (LALMs) have significantly improved their reasoning capabilities through reinforcement learning with rule-based rewards. However, the explicit reasoning process has yet to show significant benefits for audio question answering, and effectively leveraging deep reasoning remains an open challenge, with LALMs still falling short of human-level auditory-language reasoning. To address these limitations, we propose Audio-Thinker, a reinforcement learning framework designed to enhance the reasoning capabilities of LALMs, with a focus on improving adaptability, consistency, and effectiveness. Our approach introduces an adaptive think accuracy reward, enabling the model to adjust its reasoning strategies based on task complexity dynamically. Furthermore, we incorporate an external reward model to evaluate the overall consistency and quality of the reasoning process, complemented by think-based rewards that help the model distinguish between valid and flawed reasoning paths during training. Experimental results demonstrate that our Audio-Thinker model outperforms existing reasoning-oriented LALMs across various benchmark tasks, exhibiting superior reasoning and generalization capabilities.
comment: preprint
☆ Progressive Depth Up-scaling via Optimal Transport
Scaling Large Language Models (LLMs) yields performance gains but incurs substantial training costs. Depth up-scaling offers training efficiency by adding new layers to pre-trained models. However, most existing methods copy or average weights from base layers, neglecting neuron permutation differences. This limitation can potentially cause misalignment that harms performance. Inspired by applying Optimal Transport (OT) for neuron alignment, we propose Optimal Transport Depth Up-Scaling (OpT-DeUS). OpT-DeUS aligns and fuses Transformer blocks in adjacent base layers via OT for new layer creation, to mitigate neuron permutation mismatch between layers. OpT-DeUS achieves better overall performance and offers improved training efficiency than existing methods for continual pre-training and supervised fine-tuning across different model sizes. To further evaluate the impact of interpolation positions, our extensive analysis shows that inserting new layers closer to the top results in higher training efficiency due to shorter back-propagation time while obtaining additional performance gains.
☆ WideSearch: Benchmarking Agentic Broad Info-Seeking
From professional research to everyday planning, many tasks are bottlenecked by wide-scale information seeking, which is more repetitive than cognitively complex. With the rapid development of Large Language Models (LLMs), automated search agents powered by LLMs offer a promising solution to liberate humans from this tedious work. However, the capability of these agents to perform such "wide-context" collection reliably and completely remains largely unevaluated due to a lack of suitable benchmarks. To bridge this gap, we introduce WideSearch, a new benchmark engineered to evaluate agent reliability on these large-scale collection tasks. The benchmark features 200 manually curated questions (100 in English, 100 in Chinese) from over 15 diverse domains, grounded in real user queries. Each task requires agents to collect large-scale atomic information, which could be verified one by one objectively, and arrange it into a well-organized output. A rigorous five-stage quality control pipeline ensures the difficulty, completeness, and verifiability of the dataset. We benchmark over 10 state-of-the-art agentic search systems, including single-agent, multi-agent frameworks, and end-to-end commercial systems. Most systems achieve overall success rates near 0\%, with the best performer reaching just 5\%. However, given sufficient time, cross-validation by multiple human testers can achieve a near 100\% success rate. These results demonstrate that present search agents have critical deficiencies in large-scale information seeking, underscoring urgent areas for future research and development in agentic search. Our dataset, evaluation pipeline, and benchmark results have been publicly released at https://widesearch-seed.github.io/
☆ The Medical Metaphors Corpus (MCC)
Metaphor is a fundamental cognitive mechanism that shapes scientific understanding, enabling the communication of complex concepts while potentially constraining paradigmatic thinking. Despite the prevalence of figurative language in scientific discourse, existing metaphor detection resources primarily focus on general-domain text, leaving a critical gap for domain-specific applications. In this paper, we present the Medical Metaphors Corpus (MCC), a comprehensive dataset of 792 annotated scientific conceptual metaphors spanning medical and biological domains. MCC aggregates metaphorical expressions from diverse sources including peer-reviewed literature, news media, social media discourse, and crowdsourced contributions, providing both binary and graded metaphoricity judgments validated through human annotation. Each instance includes source-target conceptual mappings and perceived metaphoricity scores on a 0-7 scale, establishing the first annotated resource for computational scientific metaphor research. Our evaluation demonstrates that state-of-the-art language models achieve modest performance on scientific metaphor detection, revealing substantial room for improvement in domain-specific figurative language understanding. MCC enables multiple research applications including metaphor detection benchmarking, quality-aware generation systems, and patient-centered communication tools.
☆ Exploring Procedural Data Generation for Automatic Acoustic Guitar Fingerpicking Transcription
Automatic transcription of acoustic guitar fingerpicking performances remains a challenging task due to the scarcity of labeled training data and legal constraints connected with musical recordings. This work investigates a procedural data generation pipeline as an alternative to real audio recordings for training transcription models. Our approach synthesizes training data through four stages: knowledge-based fingerpicking tablature composition, MIDI performance rendering, physical modeling using an extended Karplus-Strong algorithm, and audio augmentation including reverb and distortion. We train and evaluate a CRNN-based note-tracking model on both real and synthetic datasets, demonstrating that procedural data can be used to achieve reasonable note-tracking results. Finetuning with a small amount of real data further enhances transcription accuracy, improving over models trained exclusively on real recordings. These results highlight the potential of procedurally generated audio for data-scarce music information retrieval tasks.
comment: Accepted to the 6th Conference on AI Music Creativity (AIMC), 2025
☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
☆ Improving Document Retrieval Coherence for Semantically Equivalent Queries
Dense Retrieval (DR) models have proven to be effective for Document Retrieval and Information Grounding tasks. Usually, these models are trained and optimized for improving the relevance of top-ranked documents for a given query. Previous work has shown that popular DR models are sensitive to the query and document lexicon: small variations of it may lead to a significant difference in the set of retrieved documents. In this paper, we propose a variation of the Multi-Negative Ranking loss for training DR that improves the coherence of models in retrieving the same documents with respect to semantically similar queries. The loss penalizes discrepancies between the top-k ranked documents retrieved for diverse but semantic equivalent queries. We conducted extensive experiments on various datasets, MS-MARCO, Natural Questions, BEIR, and TREC DL 19/20. The results show that (i) models optimizes by our loss are subject to lower sensitivity, and, (ii) interestingly, higher accuracy.
☆ Joint Transcription of Acoustic Guitar Strumming Directions and Chords
Automatic transcription of guitar strumming is an underrepresented and challenging task in Music Information Retrieval (MIR), particularly for extracting both strumming directions and chord progressions from audio signals. While existing methods show promise, their effectiveness is often hindered by limited datasets. In this work, we extend a multimodal approach to guitar strumming transcription by introducing a novel dataset and a deep learning-based transcription model. We collect 90 min of real-world guitar recordings using an ESP32 smartwatch motion sensor and a structured recording protocol, complemented by a synthetic dataset of 4h of labeled strumming audio. A Convolutional Recurrent Neural Network (CRNN) model is trained to detect strumming events, classify their direction, and identify the corresponding chords using only microphone audio. Our evaluation demonstrates significant improvements over baseline onset detection algorithms, with a hybrid method combining synthetic and real-world data achieving the highest accuracy for both strumming action detection and chord classification. These results highlight the potential of deep learning for robust guitar strumming transcription and open new avenues for automatic rhythm guitar analysis.
comment: Accepted to the 26th International Society for Music Information Retrieval Conference (ISMIR), 2025
☆ Understanding Syntactic Generalization in Structure-inducing Language Models
Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. A wide variety of SiLMs have been proposed. However, these have typically been evaluated on a relatively small scale, and evaluation of these models has systematic gaps and lacks comparability. In this work, we study three different SiLM architectures using both natural language (English) corpora and synthetic bracketing expressions: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022) and GPST (Hu et al., 2024). We compare them with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.
comment: Code available at https://github.com/davidarps/silm
☆ Toward Machine Interpreting: Lessons from Human Interpreting Studies
Current speech translation systems, while having achieved impressive accuracies, are rather static in their behavior and do not adapt to real-world situations in ways human interpreters do. In order to improve their practical usefulness and enable interpreting-like experiences, a precise understanding of the nature of human interpreting is crucial. To this end, we discuss human interpreting literature from the perspective of the machine translation field, while considering both operational and qualitative aspects. We identify implications for the development of speech translation systems and argue that there is great potential to adopt many human interpreting principles using recent modeling techniques. We hope that our findings provide inspiration for closing the perceived usability gap, and can motivate progress toward true machine interpreting.
Large Language Models for Subjective Language Understanding: A Survey
Subjective language understanding refers to a broad set of natural language processing tasks where the goal is to interpret or generate content that conveys personal feelings, opinions, or figurative meanings rather than objective facts. With the advent of large language models (LLMs) such as ChatGPT, LLaMA, and others, there has been a paradigm shift in how we approach these inherently nuanced tasks. In this survey, we provide a comprehensive review of recent advances in applying LLMs to subjective language tasks, including sentiment analysis, emotion recognition, sarcasm detection, humor understanding, stance detection, metaphor interpretation, intent detection, and aesthetics assessment. We begin by clarifying the definition of subjective language from linguistic and cognitive perspectives, and we outline the unique challenges posed by subjective language (e.g. ambiguity, figurativeness, context dependence). We then survey the evolution of LLM architectures and techniques that particularly benefit subjectivity tasks, highlighting why LLMs are well-suited to model subtle human-like judgments. For each of the eight tasks, we summarize task definitions, key datasets, state-of-the-art LLM-based methods, and remaining challenges. We provide comparative insights, discussing commonalities and differences among tasks and how multi-task LLM approaches might yield unified models of subjectivity. Finally, we identify open issues such as data limitations, model bias, and ethical considerations, and suggest future research directions. We hope this survey will serve as a valuable resource for researchers and practitioners interested in the intersection of affective computing, figurative language processing, and large-scale language models.
☆ Expert Preference-based Evaluation of Automated Related Work Generation
Expert domain writing, such as scientific writing, typically demands extensive domain knowledge. Recent advances in LLMs show promising potential in reducing the expert workload. However, evaluating the quality of automatically generated scientific writing is a crucial open issue, as it requires knowledge of domain-specific evaluation criteria and the ability to discern expert preferences. Conventional automatic metrics and LLM-as-a-judge systems are insufficient to grasp expert preferences and domain-specific quality standards. To address this gap and support human-AI collaborative writing, we focus on related work generation, one of the most challenging scientific tasks, as an exemplar. We propose GREP, a multi-turn evaluation framework that integrates classical related work evaluation criteria with expert-specific preferences. Instead of assigning a single score, our framework decomposes the evaluation into fine-grained dimensions. This localized evaluation approach is further augmented with contrastive few-shot examples to provide detailed contextual guidance for the evaluation dimensions. The design principles allow our framework to deliver cardinal assessment of quality, which can facilitate better post-training compared to ordinal preference data. For better accessibility, we design two variants of GREP: a more precise variant with proprietary LLMs as evaluators, and a cheaper alternative with open-weight LLMs. Empirical investigation reveals that our framework is able to assess the quality of related work sections in a much more robust manner compared to standard LLM judges, reflects natural scenarios of scientific writing, and bears a strong correlation with the human expert assessment. We also observe that generations from state-of-the-art LLMs struggle to satisfy validation constraints of a suitable related work section. They (mostly) fail to improve based on feedback as well.
comment: Project page: https://ukplab.github.io/arxiv2025-expert-eval-rw/
☆ Challenges and opportunities in portraying emotion in generated sign language
Non-manual signals in sign languages continue to be a challenge for signing avatars. More specifically, emotional content has been difficult to incorporate because of a lack of a standard method of specifying the avatar's emotional state. This paper explores the application of an intuitive two-parameter representation for emotive non-manual signals to the Paula signing avatar that shows promise for facilitating the linguistic specification of emotional facial expressions in a more coherent manner than previous methods. Users can apply these parameters to control Paula's emotional expressions through a textual representation called the EASIER notation. The representation can allow avatars to express more nuanced emotional states using two numerical parameters. It also has the potential to enable more consistent specification of emotional non-manual signals in linguistic annotations which drive signing avatars.
☆ Tailored Emotional LLM-Supporter: Enhancing Cultural Sensitivity
Large language models (LLMs) show promise in offering emotional support and generating empathetic responses for individuals in distress, but their ability to deliver culturally sensitive support remains underexplored due to lack of resources. In this work, we introduce CultureCare, the first dataset designed for this task, spanning four cultures and including 1729 distress messages, 1523 cultural signals, and 1041 support strategies with fine-grained emotional and cultural annotations. Leveraging CultureCare, we (i) develop and test four adaptation strategies for guiding three state-of-the-art LLMs toward culturally sensitive responses; (ii) conduct comprehensive evaluations using LLM judges, in-culture human annotators, and clinical psychologists; (iii) show that adapted LLMs outperform anonymous online peer responses, and that simple cultural role-play is insufficient for cultural sensitivity; and (iv) explore the application of LLMs in clinical training, where experts highlight their potential in fostering cultural competence in future therapists.
comment: Under review; joint first authors
☆ Few-shot Cross-lingual Aspect-Based Sentiment Analysis with Sequence-to-Sequence Models
Aspect-based sentiment analysis (ABSA) has received substantial attention in English, yet challenges remain for low-resource languages due to the scarcity of labelled data. Current cross-lingual ABSA approaches often rely on external translation tools and overlook the potential benefits of incorporating a small number of target language examples into training. In this paper, we evaluate the effect of adding few-shot target language examples to the training set across four ABSA tasks, six target languages, and two sequence-to-sequence models. We show that adding as few as ten target language examples significantly improves performance over zero-shot settings and achieves a similar effect to constrained decoding in reducing prediction errors. Furthermore, we demonstrate that combining 1,000 target language examples with English data can even surpass monolingual baselines. These findings offer practical insights for improving cross-lingual ABSA in low-resource and domain-specific settings, as obtaining ten high-quality annotated examples is both feasible and highly effective.
comment: Accepted for presentation at the 28th International Conference on Text, Speech and Dialogue (TSD 2025)
Large Language Models for Czech Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to identify sentiment toward specific aspects of an entity. While large language models (LLMs) have shown strong performance in various natural language processing (NLP) tasks, their capabilities for Czech ABSA remain largely unexplored. In this work, we conduct a comprehensive evaluation of 19 LLMs of varying sizes and architectures on Czech ABSA, comparing their performance in zero-shot, few-shot, and fine-tuning scenarios. Our results show that small domain-specific models fine-tuned for ABSA outperform general-purpose LLMs in zero-shot and few-shot settings, while fine-tuned LLMs achieve state-of-the-art results. We analyze how factors such as multilingualism, model size, and recency influence performance and present an error analysis highlighting key challenges, particularly in aspect term prediction. Our findings provide insights into the suitability of LLMs for Czech ABSA and offer guidance for future research in this area.
comment: Accepted for presentation at the 28th International Conference on Text, Speech and Dialogue (TSD 2025)
LLMs for Law: Evaluating Legal-Specific LLMs on Contract Understanding
Despite advances in legal NLP, no comprehensive evaluation covering multiple legal-specific LLMs currently exists for contract classification tasks in contract understanding. To address this gap, we present an evaluation of 10 legal-specific LLMs on three English language contract understanding tasks and compare them with 7 general-purpose LLMs. The results show that legal-specific LLMs consistently outperform general-purpose models, especially on tasks requiring nuanced legal understanding. Legal-BERT and Contracts-BERT establish new SOTAs on two of the three tasks, despite having 69% fewer parameters than the best-performing general-purpose LLM. We also identify CaseLaw-BERT and LexLM as strong additional baselines for contract understanding. Our results provide a holistic evaluation of legal-specific LLMs and will facilitate the development of more accurate contract understanding systems.
comment: Under review. 4 pages + references
☆ Evaluating Large Language Models as Expert Annotators
Textual data annotation, the process of labeling or tagging text with relevant information, is typically costly, time-consuming, and labor-intensive. While large language models (LLMs) have demonstrated their potential as direct alternatives to human annotators for general domains natural language processing (NLP) tasks, their effectiveness on annotation tasks in domains requiring expert knowledge remains underexplored. In this paper, we investigate: whether top-performing LLMs, which might be perceived as having expert-level proficiency in academic and professional benchmarks, can serve as direct alternatives to human expert annotators? To this end, we evaluate both individual LLMs and multi-agent approaches across three highly specialized domains: finance, biomedicine, and law. Specifically, we propose a multi-agent discussion framework to simulate a group of human annotators, where LLMs are tasked to engage in discussions by considering others' annotations and justifications before finalizing their labels. Additionally, we incorporate reasoning models (e.g., o3-mini) to enable a more comprehensive comparison. Our empirical results reveal that: (1) Individual LLMs equipped with inference-time techniques (e.g., chain-of-thought (CoT), self-consistency) show only marginal or even negative performance gains, contrary to prior literature suggesting their broad effectiveness. (2) Overall, reasoning models do not demonstrate statistically significant improvements over non-reasoning models in most settings. This suggests that extended long CoT provides relatively limited benefits for data annotation in specialized domains. (3) Certain model behaviors emerge in the multi-agent discussion environment. For instance, Claude 3.7 Sonnet with thinking rarely changes its initial annotations, even when other agents provide correct annotations or valid reasoning.
comment: Accepted to COLM 2025
☆ Evaluating Compositional Approaches for Focus and Sentiment Analysis
This paper summarizes the results of evaluating a compositional approach for Focus Analysis (FA) in Linguistics and Sentiment Analysis (SA) in Natural Language Processing (NLP). While quantitative evaluations of compositional and non-compositional approaches in SA exist in NLP, similar quantitative evaluations are very rare in FA in Linguistics that deal with linguistic expressions representing focus or emphasis such as "it was John who left". We fill this gap in research by arguing that compositional rules in SA also apply to FA because FA and SA are closely related meaning that SA is part of FA. Our compositional approach in SA exploits basic syntactic rules such as rules of modification, coordination, and negation represented in the formalism of Universal Dependencies (UDs) in English and applied to words representing sentiments from sentiment dictionaries. Some of the advantages of our compositional analysis method for SA in contrast to non-compositional analysis methods are interpretability and explainability. We test the accuracy of our compositional approach and compare it with a non-compositional approach VADER that uses simple heuristic rules to deal with negation, coordination and modification. In contrast to previous related work that evaluates compositionality in SA on long reviews, this study uses more appropriate datasets to evaluate compositionality. In addition, we generalize the results of compositional approaches in SA to compositional approaches in FA.
☆ Can You Trick the Grader? Adversarial Persuasion of LLM Judges
As large language models take on growing roles as automated evaluators in practical settings, a critical question arises: Can individuals persuade an LLM judge to assign unfairly high scores? This study is the first to reveal that strategically embedded persuasive language can bias LLM judges when scoring mathematical reasoning tasks, where correctness should be independent of stylistic variation. Grounded in Aristotle's rhetorical principles, we formalize seven persuasion techniques (Majority, Consistency, Flattery, Reciprocity, Pity, Authority, Identity) and embed them into otherwise identical responses. Across six math benchmarks, we find that persuasive language leads LLM judges to assign inflated scores to incorrect solutions, by up to 8% on average, with Consistency causing the most severe distortion. Notably, increasing model size does not substantially mitigate this vulnerability. Further analysis demonstrates that combining multiple persuasion techniques amplifies the bias, and pairwise evaluation is likewise susceptible. Moreover, the persuasive effect persists under counter prompting strategies, highlighting a critical vulnerability in LLM-as-a-Judge pipelines and underscoring the need for robust defenses against persuasion-based attacks.
comment: 19 pages, 8 figures
☆ Grove MoE: Towards Efficient and Superior MoE LLMs with Adjugate Experts
The Mixture of Experts (MoE) architecture is a cornerstone of modern state-of-the-art (SOTA) large language models (LLMs). MoE models facilitate scalability by enabling sparse parameter activation. However, traditional MoE architecture uses homogeneous experts of a uniform size, activating a fixed number of parameters irrespective of input complexity and thus limiting computational efficiency. To overcome this limitation, we introduce Grove MoE, a novel architecture incorporating experts of varying sizes, inspired by the heterogeneous big.LITTLE CPU architecture. This architecture features novel adjugate experts with a dynamic activation mechanism, enabling model capacity expansion while maintaining manageable computational overhead. Building on this architecture, we present GroveMoE-Base and GroveMoE-Inst, 33B-parameter LLMs developed by applying an upcycling strategy to the Qwen3-30B-A3B-Base model during mid-training and post-training. GroveMoE models dynamically activate 3.14-3.28B parameters based on token complexity and achieve performance comparable to SOTA open-source models of similar or even larger size.
☆ SASST: Leveraging Syntax-Aware Chunking and LLMs for Simultaneous Speech Translation
This work proposes a grammar-based chunking strategy that segments input streams into semantically complete units by parsing dependency relations (e.g., noun phrase boundaries, verb-object structures) and punctuation features. The method ensures chunk coherence and minimizes semantic fragmentation. Building on this mechanism, we present SASST (Syntax-Aware Simultaneous Speech Translation), an end-to-end framework integrating frozen Whisper encoder and decoder-only LLM. The unified architecture dynamically outputs translation tokens or symbols to jointly optimize translation timing and content, with target-side reordering addressing word-order divergence. Experiments on CoVoST2 multilingual corpus En-{De, Zh, Ja} demonstrate significant translation quality improvements across languages and validate the effectiveness of syntactic structures in LLM-driven SimulST systems.
☆ Pareto Multi-Objective Alignment for Language Models ECML
Large language models (LLMs) are increasingly deployed in real-world applications that require careful balancing of multiple, often conflicting, objectives, such as informativeness versus conciseness, or helpfulness versus creativity. However, current alignment methods, primarily based on RLHF, optimize LLMs toward a single reward function, resulting in rigid behavior that fails to capture the complexity and diversity of human preferences. This limitation hinders the adaptability of LLMs to practical scenarios, making multi-objective alignment (MOA) a critical yet underexplored area. To bridge this gap, we propose Pareto Multi-Objective Alignment (PAMA), a principled and computationally efficient algorithm designed explicitly for MOA in LLMs. In contrast to computationally prohibitive multi-objective optimization (MOO) methods, PAMA transforms multi-objective RLHF into a convex optimization with a closed-form solution, significantly enhancing scalability. Traditional MOO approaches suffer from prohibitive O(n^2*d) complexity, where d represents the number of model parameters, typically in the billions for LLMs, rendering direct optimization infeasible. PAMA reduces this complexity to O(n) where n is the number of objectives, enabling optimization to be completed within milliseconds. We provide theoretical guarantees that PAMA converges to a Pareto stationary point, where no objective can be improved without degrading at least one other. Extensive experiments across language models ranging from 125M to 7B parameters demonstrate PAMA's robust and effective MOA capabilities, aligning with its theoretical advantages. PAMA provides a highly efficient solution to the MOA problem that was previously considered intractable, offering a practical and theoretically grounded approach to aligning LLMs with diverse human values, paving the way for versatile and adaptable real-world AI deployments.
comment: Accepted at ECML/PKDD 2025
☆ Exploring Causal Effect of Social Bias on Faithfulness Hallucinations in Large Language Models CIKM 2025
Large language models (LLMs) have achieved remarkable success in various tasks, yet they remain vulnerable to faithfulness hallucinations, where the output does not align with the input. In this study, we investigate whether social bias contributes to these hallucinations, a causal relationship that has not been explored. A key challenge is controlling confounders within the context, which complicates the isolation of causality between bias states and hallucinations. To address this, we utilize the Structural Causal Model (SCM) to establish and validate the causality and design bias interventions to control confounders. In addition, we develop the Bias Intervention Dataset (BID), which includes various social biases, enabling precise measurement of causal effects. Experiments on mainstream LLMs reveal that biases are significant causes of faithfulness hallucinations, and the effect of each bias state differs in direction. We further analyze the scope of these causal effects across various models, specifically focusing on unfairness hallucinations, which are primarily targeted by social bias, revealing the subtle yet significant causal effect of bias on hallucination generation.
comment: Accepted by CIKM 2025 (Full Paper)
☆ Learning to Align, Aligning to Learn: A Unified Approach for Self-Optimized Alignment
Alignment methodologies have emerged as a critical pathway for enhancing language model alignment capabilities. While SFT (supervised fine-tuning) accelerates convergence through direct token-level loss intervention, its efficacy is constrained by offline policy trajectory. In contrast, RL(reinforcement learning) facilitates exploratory policy optimization, but suffers from low sample efficiency and stringent dependency on high-quality base models. To address these dual challenges, we propose GRAO (Group Relative Alignment Optimization), a unified framework that synergizes the respective strengths of SFT and RL through three key innovations: 1) A multi-sample generation strategy enabling comparative quality assessment via reward feedback; 2) A novel Group Direct Alignment Loss formulation leveraging intra-group relative advantage weighting; 3) Reference-aware parameter updates guided by pairwise preference dynamics. Our theoretical analysis establishes GRAO's convergence guarantees and sample efficiency advantages over conventional approaches. Comprehensive evaluations across complex human alignment tasks demonstrate GRAO's superior performance, achieving 57.70\%,17.65\% 7.95\% and 5.18\% relative improvements over SFT, DPO, PPO and GRPO baselines respectively. This work provides both a theoretically grounded alignment framework and empirical evidence for efficient capability evolution in language models.
comment: 12 pages, 5 figures, 7 tables
☆ What am I missing here?: Evaluating Large Language Models for Masked Sentence Prediction
Transformer-based models primarily rely on Next Token Prediction (NTP), which predicts the next token in a sequence based on the preceding context. However, NTP's focus on single-token prediction often limits a model's ability to plan ahead or maintain long-range coherence, raising questions about how well LLMs can predict longer contexts, such as full sentences within structured documents. While NTP encourages local fluency, it provides no explicit incentive to ensure global coherence across sentence boundaries-an essential skill for reconstructive or discursive tasks. To investigate this, we evaluate three commercial LLMs (GPT-4o, Claude 3.5 Sonnet, and Gemini 2.0 Flash) on Masked Sentence Prediction (MSP) - the task of infilling a randomly removed sentence - from three domains: ROCStories (narrative), Recipe1M (procedural), and Wikipedia (expository). We assess both fidelity (similarity to the original sentence) and cohesiveness (fit within the surrounding context). Our key finding reveals that commercial LLMs, despite their superlative performance in other tasks, are poor at predicting masked sentences in low-structured domains, highlighting a gap in current model capabilities.
comment: Under Review
☆ LoSemB: Logic-Guided Semantic Bridging for Inductive Tool Retrieval
Tool learning has emerged as a promising paradigm for large language models (LLMs) to solve many real-world tasks. Nonetheless, with the tool repository rapidly expanding, it is impractical to contain all tools within the limited input length of LLMs. To alleviate these issues, researchers have explored incorporating a tool retrieval module to select the most relevant tools or represent tools as unique tokens within LLM parameters. However, most state-of-the-art methods are under transductive settings, assuming all tools have been observed during training. Such a setting deviates from reality as the real-world tool repository is evolving and incorporates new tools frequently. When dealing with these unseen tools, which refer to tools not encountered during the training phase, these methods are limited by two key issues, including the large distribution shift and the vulnerability of similarity-based retrieval. To this end, inspired by human cognitive processes of mastering unseen tools through discovering and applying the logical information from prior experience, we introduce a novel Logic-Guided Semantic Bridging framework for inductive tool retrieval, namely, LoSemB, which aims to mine and transfer latent logical information for inductive tool retrieval without costly retraining. Specifically, LoSemB contains a logic-based embedding alignment module to mitigate distribution shifts and implements a relational augmented retrieval mechanism to reduce the vulnerability of similarity-based retrieval. Extensive experiments demonstrate that LoSemB achieves advanced performance in inductive settings while maintaining desirable effectiveness in the transductive setting.
☆ GLiClass: Generalist Lightweight Model for Sequence Classification Tasks
Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
comment: 14 pages, 7 tables, 2 figures
☆ Breaking Down and Building Up: Mixture of Skill-Based Vision-and-Language Navigation Agents
Vision-and-Language Navigation (VLN) poses significant challenges in enabling agents to interpret natural language instructions and navigate complex 3D environments. While recent progress has been driven by large-scale pre-training and data augmentation, current methods still struggle to generalize to unseen scenarios, particularly when complex spatial and temporal reasoning is required. In this work, we propose SkillNav, a modular framework that introduces structured, skill-based reasoning into Transformer-based VLN agents. Our method decomposes navigation into a set of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identification, Stop and Pause), each handled by a specialized agent. We then introduce a novel zero-shot Vision-Language Model (VLM)-based router, which dynamically selects the most suitable agent at each time step by aligning sub-goals with visual observations and historical actions. SkillNav achieves a new state-of-the-art performance on the R2R benchmark and demonstrates strong generalization to the GSA-R2R benchmark that includes novel instruction styles and unseen environments.
comment: 18 pages, 5 Figures,
☆ InterChart: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information
We introduce InterChart, a diagnostic benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a task central to real-world applications such as scientific reporting, financial analysis, and public policy dashboards. Unlike prior benchmarks focusing on isolated, visually uniform charts, InterChart challenges models with diverse question types ranging from entity inference and trend correlation to numerical estimation and abstract multi-step reasoning grounded in 2-3 thematically or structurally related charts. We organize the benchmark into three tiers of increasing difficulty: (1) factual reasoning over individual charts, (2) integrative analysis across synthetically aligned chart sets, and (3) semantic inference over visually complex, real-world chart pairs. Our evaluation of state-of-the-art open and closed-source VLMs reveals consistent and steep accuracy declines as chart complexity increases. We find that models perform better when we decompose multi-entity charts into simpler visual units, underscoring their struggles with cross-chart integration. By exposing these systematic limitations, InterChart provides a rigorous framework for advancing multimodal reasoning in complex, multi-visual environments.
comment: 18 pages, 6 figures, 12 tables. Benchmark dataset and evaluation code will be publicly made available
☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.
☆ ThinkTuning: Instilling Cognitive Reflections without Distillation
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.
comment: 15 pages
☆ Keyword-Centric Prompting for One-Shot Event Detection with Self-Generated Rationale Enhancements ECAI 2025
Although the LLM-based in-context learning (ICL) paradigm has demonstrated considerable success across various natural language processing tasks, it encounters challenges in event detection. This is because LLMs lack an accurate understanding of event triggers and tend to make over-interpretation, which cannot be effectively corrected through in-context examples alone. In this paper, we focus on the most challenging one-shot setting and propose KeyCP++, a keyword-centric chain-of-thought prompting approach. KeyCP++ addresses the weaknesses of conventional ICL by automatically annotating the logical gaps between input text and detection results for the demonstrations. Specifically, to generate in-depth and meaningful rationale, KeyCP++ constructs a trigger discrimination prompting template. It incorporates the exemplary triggers (a.k.a keywords) into the prompt as the anchor to simply trigger profiling, let LLM propose candidate triggers, and justify each candidate. These propose-and-judge rationales help LLMs mitigate over-reliance on the keywords and promote detection rule learning. Extensive experiments demonstrate the effectiveness of our approach, showcasing significant advancements in one-shot event detection.
comment: ECAI 2025
☆ IBPS: Indian Bail Prediction System
Bail decisions are among the most frequently adjudicated matters in Indian courts, yet they remain plagued by subjectivity, delays, and inconsistencies. With over 75% of India's prison population comprising undertrial prisoners, many from socioeconomically disadvantaged backgrounds, the lack of timely and fair bail adjudication exacerbates human rights concerns and contributes to systemic judicial backlog. In this paper, we present the Indian Bail Prediction System (IBPS), an AI-powered framework designed to assist in bail decision-making by predicting outcomes and generating legally sound rationales based solely on factual case attributes and statutory provisions. We curate and release a large-scale dataset of 150,430 High Court bail judgments, enriched with structured annotations such as age, health, criminal history, crime category, custody duration, statutes, and judicial reasoning. We fine-tune a large language model using parameter-efficient techniques and evaluate its performance across multiple configurations, with and without statutory context, and with RAG. Our results demonstrate that models fine-tuned with statutory knowledge significantly outperform baselines, achieving strong accuracy and explanation quality, and generalize well to a test set independently annotated by legal experts. IBPS offers a transparent, scalable, and reproducible solution to support data-driven legal assistance, reduce bail delays, and promote procedural fairness in the Indian judicial system.
☆ From Trial-and-Error to Improvement: A Systematic Analysis of LLM Exploration Mechanisms in RLVR
Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs). Unlike traditional RL approaches, RLVR leverages rule-based feedback to guide LLMs in generating and refining complex reasoning chains -- a process critically dependent on effective exploration strategies. While prior work has demonstrated RLVR's empirical success, the fundamental mechanisms governing LLMs' exploration behaviors remain underexplored. This technical report presents a systematic investigation of exploration capacities in RLVR, covering four main aspects: (1) exploration space shaping, where we develop quantitative metrics to characterize LLMs' capability boundaries; (2) entropy-performance exchange, analyzed across training stages, individual instances, and token-level patterns; and (3) RL performance optimization, examining methods to effectively translate exploration gains into measurable improvements. By unifying previously identified insights with new empirical evidence, this work aims to provide a foundational framework for advancing RLVR systems.
comment: 27pages,25figures. arXiv admin note: text overlap with arXiv:2508.02260
☆ Conversational DNA: A New Visual Language for Understanding Dialogue Structure in Human and AI
What if the patterns hidden within dialogue reveal more about communication than the words themselves? We introduce Conversational DNA, a novel visual language that treats any dialogue -- whether between humans, between human and AI, or among groups -- as a living system with interpretable structure that can be visualized, compared, and understood. Unlike traditional conversation analysis that reduces rich interaction to statistical summaries, our approach reveals the temporal architecture of dialogue through biological metaphors. Linguistic complexity flows through strand thickness, emotional trajectories cascade through color gradients, conversational relevance forms through connecting elements, and topic coherence maintains structural integrity through helical patterns. Through exploratory analysis of therapeutic conversations and historically significant human-AI dialogues, we demonstrate how this visualization approach reveals interaction patterns that traditional methods miss. Our work contributes a new creative framework for understanding communication that bridges data visualization, human-computer interaction, and the fundamental question of what makes dialogue meaningful in an age where humans increasingly converse with artificial minds.
☆ Word Clouds as Common Voices: LLM-Assisted Visualization of Participant-Weighted Themes in Qualitative Interviews
Word clouds are a common way to summarize qualitative interviews, yet traditional frequency-based methods often fail in conversational contexts: they surface filler words, ignore paraphrase, and fragment semantically related ideas. This limits their usefulness in early-stage analysis, when researchers need fast, interpretable overviews of what participant actually said. We introduce ThemeClouds, an open-source visualization tool that uses large language models (LLMs) to generate thematic, participant-weighted word clouds from dialogue transcripts. The system prompts an LLM to identify concept-level themes across a corpus and then counts how many unique participants mention each topic, yielding a visualization grounded in breadth of mention rather than raw term frequency. Researchers can customize prompts and visualization parameters, providing transparency and control. Using interviews from a user study comparing five recording-device configurations (31 participants; 155 transcripts, Whisper ASR), our approach surfaces more actionable device concerns than frequency clouds and topic-modeling baselines (e.g., LDA, BERTopic). We discuss design trade-offs for integrating LLM assistance into qualitative workflows, implications for interpretability and researcher agency, and opportunities for interactive analyses such as per-condition contrasts (``diff clouds'').
☆ Augmenting Bias Detection in LLMs Using Topological Data Analysis
Recently, many bias detection methods have been proposed to determine the level of bias a large language model captures. However, tests to identify which parts of a large language model are responsible for bias towards specific groups remain underdeveloped. In this study, we present a method using topological data analysis to identify which heads in GPT-2 contribute to the misrepresentation of identity groups present in the StereoSet dataset. We find that biases for particular categories, such as gender or profession, are concentrated in attention heads that act as hot spots. The metric we propose can also be used to determine which heads capture bias for a specific group within a bias category, and future work could extend this method to help de-bias large language models.
comment: 15 pages, 9 figures, 4 tables
☆ DeCAL Tokenwise Compression
This paper introduces DeCAL, a new method for tokenwise compression. DeCAL uses an encoder-decoder language model pretrained with denoising to learn to produce high-quality, general-purpose compressed representations by the encoder. DeCAL applies small modifications to the encoder, with the emphasis on maximizing compression quality, even at the expense of compute. We show that DeCAL at 2x compression can match uncompressed on many downstream tasks, with usually only minor dropoff in metrics up to 8x compression, among question-answering, summarization, and multi-vector retrieval tasks. DeCAL offers significant savings where pre-computed dense representations can be utilized, and we believe the approach can be further developed to be more broadly applicable.
☆ Steerable Pluralism: Pluralistic Alignment via Few-Shot Comparative Regression AAAI
Large language models (LLMs) are currently aligned using techniques such as reinforcement learning from human feedback (RLHF). However, these methods use scalar rewards that can only reflect user preferences on average. Pluralistic alignment instead seeks to capture diverse user preferences across a set of attributes, moving beyond just helpfulness and harmlessness. Toward this end, we propose a steerable pluralistic model based on few-shot comparative regression that can adapt to individual user preferences. Our approach leverages in-context learning and reasoning, grounded in a set of fine-grained attributes, to compare response options and make aligned choices. To evaluate our algorithm, we also propose two new steerable pluralistic benchmarks by adapting the Moral Integrity Corpus (MIC) and the HelpSteer2 datasets, demonstrating the applicability of our approach to value-aligned decision-making and reward modeling, respectively. Our few-shot comparative regression approach is interpretable and compatible with different attributes and LLMs, while outperforming multiple baseline and state-of-the-art methods. Our work provides new insights and research directions in pluralistic alignment, enabling a more fair and representative use of LLMs and advancing the state-of-the-art in ethical AI.
comment: AIES '25: Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics, and Society
☆ Re:Verse -- Can Your VLM Read a Manga?
Current Vision Language Models (VLMs) demonstrate a critical gap between surface-level recognition and deep narrative reasoning when processing sequential visual storytelling. Through a comprehensive investigation of manga narrative understanding, we reveal that while recent large multimodal models excel at individual panel interpretation, they systematically fail at temporal causality and cross-panel cohesion, core requirements for coherent story comprehension. We introduce a novel evaluation framework that combines fine-grained multimodal annotation, cross-modal embedding analysis, and retrieval-augmented assessment to systematically characterize these limitations. Our methodology includes (i) a rigorous annotation protocol linking visual elements to narrative structure through aligned light novel text, (ii) comprehensive evaluation across multiple reasoning paradigms, including direct inference and retrieval-augmented generation, and (iii) cross-modal similarity analysis revealing fundamental misalignments in current VLMs' joint representations. Applying this framework to Re:Zero manga across 11 chapters with 308 annotated panels, we conduct the first systematic study of long-form narrative understanding in VLMs through three core evaluation axes: generative storytelling, contextual dialogue grounding, and temporal reasoning. Our findings demonstrate that current models lack genuine story-level intelligence, struggling particularly with non-linear narratives, character consistency, and causal inference across extended sequences. This work establishes both the foundation and practical methodology for evaluating narrative intelligence, while providing actionable insights into the capability of deep sequential understanding of Discrete Visual Narratives beyond basic recognition in Multimodal Models.
☆ Momentum Point-Perplexity Mechanics in Large Language Models
We take a physics-based approach to studying how the internal hidden states of large language models change from token to token during inference. Across 20 open-source transformer models (135M-3B parameters), we find that a quantity combining the rate of change in hidden states and the model's next-token certainty, analogous to energy in physics, remains nearly constant. Random-weight models conserve this "energy" more tightly than pre-trained ones, while training shifts models into a faster, more decisive regime with greater variability. Using this "log-Lagrangian" view, we derive a control method called Jacobian steering, which perturbs hidden states in the minimal way needed to favor a target token. This approach maintained near-constant energy in two tested models and produced continuations rated higher in semantic quality than the models' natural outputs. Viewing transformers through this mechanics lens offers a principled basis for interpretability, anomaly detection, and low-risk steering. This could help make powerful models more predictable and aligned with human intent.
☆ Enhancing Small LLM Alignment through Margin-Based Objective Modifications under Resource Constraints
Small large language models (LLMs) often face difficulties in aligning output to human preferences, particularly when operating under severe performance gaps. In this work, we propose two lightweight DPO-based variants -- Adaptive Margin-Sigmoid Loss and APO-hinge-zero -- to better address underperformance scenarios by introducing margin-based objectives and selective update mechanisms. Our APO-hinge-zero method, which combines hinge-induced hard-example mining with the chosen-focused optimization of APO-zero, achieves strong results. In AlpacaEval, APO-hinge-zero improves the win rate by +2.0 points and the length-controlled win rate by +1.4 points compared to the APO-zero baseline. In MT-Bench, our methods maintain competitive performance in diverse categories, particularly excelling in STEM and Humanities tasks. These results demonstrate that simple modifications to preference-based objectives can significantly enhance small LLM alignment under resource constraints, offering a practical path toward more efficient deployment.
comment: 10 pages, 3 figures
☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
Prior work on language modeling showed conflicting findings about whether morphologically aligned approaches to tokenization improve performance, particularly for languages with complex morphology. To investigate this, we select a typologically diverse set of languages: Telugu (agglutinative), Hindi (primarily fusional with some agglutination), and English (fusional). We conduct a comprehensive evaluation of language models -- starting from tokenizer training and extending through the finetuning and downstream task evaluation. To account for the consistent performance differences observed across tokenizer variants, we focus on two key factors: morphological alignment and tokenization quality. To assess morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal that better morphological alignment correlates positively -- though moderately -- with performance in syntax-based tasks such as Parts-of-Speech tagging, Named Entity Recognition and Dependency Parsing. However, we also find that the tokenizer algorithm (Byte-pair Encoding vs. Unigram) plays a more significant role in influencing downstream performance than morphological alignment alone. Naive Unigram tokenizers outperform others across most settings, though hybrid tokenizers that incorporate morphological segmentation significantly improve performance within the BPE framework. In contrast, intrinsic metrics like Corpus Token Count (CTC) and R\'enyi entropy showed no correlation with downstream performance.
☆ Mol-R1: Towards Explicit Long-CoT Reasoning in Molecule Discovery
Large language models (LLMs), especially Explicit Long Chain-of-Thought (CoT) reasoning models like DeepSeek-R1 and QWQ, have demonstrated powerful reasoning capabilities, achieving impressive performance in commonsense reasoning and mathematical inference. Despite their effectiveness, Long-CoT reasoning models are often criticized for their limited ability and low efficiency in knowledge-intensive domains such as molecule discovery. Success in this field requires a precise understanding of domain knowledge, including molecular structures and chemical principles, which is challenging due to the inherent complexity of molecular data and the scarcity of high-quality expert annotations. To bridge this gap, we introduce Mol-R1, a novel framework designed to improve explainability and reasoning performance of R1-like Explicit Long-CoT reasoning LLMs in text-based molecule generation. Our approach begins with a high-quality reasoning dataset curated through Prior Regulation via In-context Distillation (PRID), a dedicated distillation strategy to effectively generate paired reasoning traces guided by prior regulations. Building upon this, we introduce MoIA, Molecular Iterative Adaptation, a sophisticated training strategy that iteratively combines Supervised Fine-tuning (SFT) with Reinforced Policy Optimization (RPO), tailored to boost the reasoning performance of R1-like reasoning models for molecule discovery. Finally, we examine the performance of Mol-R1 in the text-based molecule reasoning generation task, showing superior performance against existing baselines.
comment: 20 pages
☆ CoDAE: Adapting Large Language Models for Education via Chain-of-Thought Data Augmentation
Large Language Models (LLMs) are increasingly employed as AI tutors due to their scalability and potential for personalized instruction. However, off-the-shelf LLMs often underperform in educational settings: they frequently reveal answers too readily, fail to adapt their responses to student uncertainty, and remain vulnerable to emotionally manipulative prompts. To address these challenges, we introduce CoDAE, a framework that adapts LLMs for educational use through Chain-of-Thought (CoT) data augmentation. We collect real-world dialogues between students and a ChatGPT-based tutor and enrich them using CoT prompting to promote step-by-step reasoning and pedagogically aligned guidance. Furthermore, we design targeted dialogue cases to explicitly mitigate three key limitations: over-compliance, low response adaptivity, and threat vulnerability. We fine-tune four open-source LLMs on different variants of the augmented datasets and evaluate them in simulated educational scenarios using both automatic metrics and LLM-as-a-judge assessments. Our results show that models fine-tuned with CoDAE deliver more pedagogically appropriate guidance, better support reasoning processes, and effectively resist premature answer disclosure.
☆ Bilevel MCTS for Amortized O(1) Node Selection in Classical Planning
We study an efficient implementation of Multi-Armed Bandit (MAB)-based Monte-Carlo Tree Search (MCTS) for classical planning. One weakness of MCTS is that it spends a significant time deciding which node to expand next. While selecting a node from an OPEN list with $N$ nodes has $O(1)$ runtime complexity with traditional array-based priority-queues for dense integer keys, the tree-based OPEN list used by MCTS requires $O(\log N)$, which roughly corresponds to the search depth $d$. In classical planning, $d$ is arbitrarily large (e.g., $2^k-1$ in $k$-disk Tower-of-Hanoi) and the runtime for node selection is significant, unlike in game tree search, where the cost is negligible compared to the node evaluation (rollouts) because $d$ is inherently limited by the game (e.g., $d\leq 361$ in Go). To improve this bottleneck, we propose a bilevel modification to MCTS that runs a best-first search from each selected leaf node with an expansion budget proportional to $d$, which achieves amortized $O(1)$ runtime for node selection, equivalent to the traditional queue-based OPEN list. In addition, we introduce Tree Collapsing, an enhancement that reduces action selection steps and further improves the performance.
♻ ☆ QUDsim: Quantifying Discourse Similarities in LLM-Generated Text
As large language models become increasingly capable at various writing tasks, their weakness at generating unique and creative content becomes a major liability. Although LLMs have the ability to generate text covering diverse topics, there is an overall sense of repetitiveness across texts that we aim to formalize and quantify via a similarity metric. The familiarity between documents arises from the persistence of underlying discourse structures. However, existing similarity metrics dependent on lexical overlap and syntactic patterns largely capture $\textit{content}$ overlap, thus making them unsuitable for detecting $\textit{structural}$ similarities. We introduce an abstraction based on linguistic theories in Questions Under Discussion (QUD) and question semantics to help quantify differences in discourse progression. We then use this framework to build $\textbf{QUDsim}$, a similarity metric that can detect discursive parallels between documents. Using QUDsim, we find that LLMs often reuse discourse structures (more so than humans) across samples, even when content differs. Furthermore, LLMs are not only repetitive and structurally uniform, but are also divergent from human authors in the types of structures they use.
comment: COLM 2025 Camera Ready
♻ ☆ Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector. Our code is publicly available at: https://github.com/hannahxchen/llm-censorship-steering
comment: Accepted to COLM 2025
♻ ☆ How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence
Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training. Our code is publicly available at https://github.com/HZD01/post-training-mechanistic-analysis.
comment: COLM 2025
♻ ☆ TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
♻ ☆ CLAIR-A: Leveraging Large Language Models to Judge Audio Captions
The Automated Audio Captioning (AAC) task asks models to generate natural language descriptions of an audio input. Evaluating these machine-generated audio captions is a complex task that requires considering diverse factors, among them, auditory scene understanding, sound-object inference, temporal coherence, and the environmental context of the scene. While current methods focus on specific aspects, they often fail to provide an overall score that aligns well with human judgment. In this work, we propose CLAIR-A, a simple and flexible method that leverages the zero-shot capabilities of large language models (LLMs) to evaluate candidate audio captions by directly asking LLMs for a semantic distance score. In our evaluations, CLAIR-A better predicts human judgements of quality compared to traditional metrics, with a 5.8% relative accuracy improvement compared to the domain-specific FENSE metric and up to 11% over the best general-purpose measure on the Clotho-Eval dataset. Moreover, CLAIR-A offers more transparency by allowing the language model to explain the reasoning behind its scores, with these explanations rated up to 30% better by human evaluators than those provided by baseline methods. CLAIR-A is made publicly available at https://github.com/DavidMChan/clair-a.
comment: Accepted to ASRU 2025; Code is publicly available at https://github.com/DavidMChan/clair-a
♻ ☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
♻ ☆ Chain of Thought Still Thinks Fast: APriCoT Helps with Thinking Slow
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings show that these biases are predictive of model preference and mirror human test-taking strategies even when chain of thought (CoT) reasoning is used. To address this issue, we introduce Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, APriCoT effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a slow thinking process which CoT alone may not provide as it tends to reinforce fast thinking model bias under some prompting methodologies. APriCoT is a step toward developing more robust and fair language models that can think slow.
comment: Final version. Published In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 47) 2025
♻ ☆ MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy
Large language models have achieved substantial progress in mathematical reasoning, yet their advancement is limited by the scarcity of high-quality, high-difficulty training data. Existing synthesis methods largely rely on transforming human-written templates, limiting both diversity and scalability. We propose MathSmith, a novel framework for synthesizing challenging mathematical problems to enhance LLM reasoning. Rather than modifying existing problems, MathSmith constructs new ones from scratch by randomly sampling concept-explanation pairs from PlanetMath, ensuring data independence and avoiding contamination. To increase difficulty, we design nine predefined strategies as soft constraints during rationales. We further adopts reinforcement learning to jointly optimize structural validity, reasoning complexity, and answer consistency. The length of the reasoning trace generated under autoregressive prompting is used to reflect cognitive complexity, encouraging the creation of more demanding problems aligned with long-chain-of-thought reasoning. Experiments across five benchmarks, categorized as easy & medium (GSM8K, MATH-500) and hard (AIME2024, AIME2025, OlympiadBench), show that MathSmith consistently outperforms existing baselines under both short and long CoT settings. Additionally, a weakness-focused variant generation module enables targeted improvement on specific concepts. Overall, MathSmith exhibits strong scalability, generalization, and transferability, highlighting the promise of high-difficulty synthetic data in advancing LLM reasoning capabilities.
♻ ☆ AI-AI Bias: large language models favor communications generated by large language models
Are large language models (LLMs) biased in favor of communications produced by LLMs, leading to possible antihuman discrimination? Using a classical experimental design inspired by employment discrimination studies, we tested widely used LLMs, including GPT-3.5, GPT-4 and a selection of recent open-weight models in binary choice scenarios. These involved LLM-based assistants selecting between goods (the goods we study include consumer products, academic papers, and film-viewings) described either by humans or LLMs. Our results show a consistent tendency for LLM-based AIs to prefer LLM-presented options. This suggests the possibility of future AI systems implicitly discriminating against humans as a class, giving AI agents and AI-assisted humans an unfair advantage.
comment: 8 pages, 4 figures
♻ ☆ Reviewing Clinical Knowledge in Medical Large Language Models: Training and Beyond
The large-scale development of large language models (LLMs) in medical contexts, such as diagnostic assistance and treatment recommendations, necessitates that these models possess accurate medical knowledge and deliver traceable decision-making processes. Clinical knowledge, encompassing the insights gained from research on the causes, prognosis, diagnosis, and treatment of diseases, has been extensively examined within real-world medical practices. Recently, there has been a notable increase in research efforts aimed at integrating this type of knowledge into LLMs, encompassing not only traditional text and multimodal data integration but also technologies such as knowledge graphs (KGs) and retrieval-augmented generation (RAG). In this paper, we review the various initiatives to embed clinical knowledge into training-based, KG-supported, and RAG-assisted LLMs. We begin by gathering reliable knowledge sources from the medical domain, including databases and datasets. Next, we evaluate implementations for integrating clinical knowledge through specialized datasets and collaborations with external knowledge sources such as KGs and relevant documentation. Furthermore, we discuss the applications of the developed medical LLMs in the industrial sector to assess the disparity between models developed in academic settings and those in industry. We conclude the survey by presenting evaluation systems applicable to relevant tasks and identifying potential challenges facing this field. In this review, we do not aim for completeness, since any ostensibly complete review would soon be outdated. Our goal is to illustrate diversity by selecting representative and accessible items from current research and industry practices, reflecting real-world situations rather than claiming completeness. Thus, we emphasize showcasing diverse approaches.
comment: Accepted for publication in Knowledge-Based Systems. The arXiv version is the pre-peer-review preprint, and the final published version is not available here due to publisher policy
♻ ☆ Fairness through Difference Awareness: Measuring Desired Group Discrimination in LLMs ACL 2025
Algorithmic fairness has conventionally adopted the mathematically convenient perspective of racial color-blindness (i.e., difference unaware treatment). However, we contend that in a range of important settings, group difference awareness matters. For example, differentiating between groups may be necessary in legal contexts (e.g., the U.S. compulsory draft applies to men but not women) and harm assessments (e.g., referring to girls as ``terrorists'' may be less harmful than referring to Muslim people as such). Thus, in contrast to most fairness work, we study fairness through the perspective of treating people differently -- when it is contextually appropriate to. We first introduce an important distinction between descriptive (fact-based), normative (value-based), and correlation (association-based) benchmarks. This distinction is significant because each category requires separate interpretation and mitigation tailored to its specific characteristics. Then, we present a benchmark suite composed of eight different scenarios for a total of 16k questions that enables us to assess difference awareness. Finally, we show results across ten models that demonstrate difference awareness is a distinct dimension to fairness where existing bias mitigation strategies may backfire.
comment: Best Paper award at ACL 2025; dataset available at https://github.com/Angelina-Wang/difference_awareness
♻ ☆ SynthVLM: Towards High-Quality and Efficient Synthesis of Image-Caption Datasets for Vision-Language Models
Vision-Language Models (VLMs) have recently emerged, demonstrating remarkable vision-understanding capabilities. However, training these models requires large-scale datasets, which brings challenges related to efficiency, effectiveness, and quality of web data. In this paper, we introduce SynthVLM, a new data synthesis and curation method for generating image-caption pairs. Unlike traditional methods, where captions are generated from images, SynthVLM utilizes advanced diffusion models and high-quality captions to synthesize and select images from text captions, thereby creating precisely aligned image-text pairs. We further introduce SynthVLM-100K, a high-quality dataset consisting of 100K curated and synthesized image-caption pairs. In both model and human evaluations, SynthVLM-100K outperforms traditional real-world datasets. Leveraging this dataset, we develop a new family of multimodal large language models (MLLMs), SynthVLM-7B and SynthVLM-13B, which achieve state-of-the-art (SOTA) performance on various vision question-answering (VQA) tasks. Notably, our models outperform LLaVA across most metrics with only 18\% pretrain data. Furthermore, SynthVLM-7B and SynthVLM-13B attain SOTA performance on the MMLU benchmark, demonstrating that the high-quality SynthVLM-100K dataset preserves language abilities.
♻ ☆ RAIR: Retrieval-Augmented Iterative Refinement for Chinese Spelling Correction
Chinese Spelling Correction (CSC) aims to detect and correct erroneous tokens in sentences. Traditional CSC focuses on equal length correction and uses pretrained language models (PLMs). While Large Language Models (LLMs) have shown remarkable success in identifying and rectifying potential errors, they often struggle with adapting to domain-specific corrections, especially when encountering terminologies in specialized domains. To address domain adaptation, we propose a \textbf{R}etrieval-\textbf{A}ugmented \textbf{I}terative \textbf{R}efinement (RAIR) framework. Our approach constructs a retrieval corpus adaptively from domain-specific training data and dictionaries, employing a fine-tuned retriever to ensure that the retriever catches the error correction pattern. We also extend equal-length into variable-length correction scenarios. Extensive experiments demonstrate that our framework outperforms current approaches in domain spelling correction and significantly improves the performance of LLMs in variable-length scenarios.
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Personalizing language models by effectively incorporating user interaction history remains a central challenge in the development of adaptive AI systems. While large language models (LLMs) combined with Retrieval-Augmented Generation (RAG) have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graphs, automatically constructed and updated by the LLM itself, and capable of encoding information in multiple formats-including nodes, triplets, higher-order propositions, and episodic traces. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyperedges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle propagation, beam search, and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks-TriviaQA, HotpotQA, and DiaASQ-demonstrating that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ Multi-Modal Semantic Parsing for the Interpretation of Tombstone Inscriptions
Tombstones are historically and culturally rich artifacts, encapsulating individual lives, community memory, historical narratives and artistic expression. Yet, many tombstones today face significant preservation challenges, including physical erosion, vandalism, environmental degradation, and political shifts. In this paper, we introduce a novel multi-modal framework for tombstones digitization, aiming to improve the interpretation, organization and retrieval of tombstone content. Our approach leverages vision-language models (VLMs) to translate tombstone images into structured Tombstone Meaning Representations (TMRs), capturing both image and text information. To further enrich semantic parsing, we incorporate retrieval-augmented generation (RAG) for integrate externally dependent elements such as toponyms, occupation codes, and ontological concepts. Compared to traditional OCR-based pipelines, our method improves parsing accuracy from an F1 score of 36.1 to 89.5. We additionally evaluate the model's robustness across diverse linguistic and cultural inscriptions, and simulate physical degradation through image fusion to assess performance under noisy or damaged conditions. Our work represents the first attempt to formalize tombstone understanding using large vision-language models, presenting implications for heritage preservation.
comment: ACMMM 2025
♻ ☆ Is neural semantic parsing good at ellipsis resolution, or isn't it?
Neural semantic parsers have shown good overall performance for a variety of linguistic phenomena, reaching semantic matching scores of more than 90%. But how do such parsers perform on strongly context-sensitive phenomena, where large pieces of semantic information need to be duplicated to form a meaningful semantic representation? A case in point is English verb phrase ellipsis, a construct where entire verb phrases can be abbreviated by a single auxiliary verb. Are the otherwise known as powerful semantic parsers able to deal with ellipsis or aren't they? We constructed a corpus of 120 cases of ellipsis with their fully resolved meaning representation and used this as a challenge set for a large battery of neural semantic parsers. Although these parsers performed very well on the standard test set, they failed in the instances with ellipsis. Data augmentation helped improve the parsing results. The reason for the difficulty of parsing elided phrases is not that copying semantic material is hard, but that usually occur in linguistically complicated contexts causing most of the parsing errors.
comment: Accepted by 16th IWCS
♻ ☆ DAGR: Decomposition Augmented Graph Retrieval with LLMs
Large Language Models (LLMs) excel at many Natural Language Processing (NLP) tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To address this challenge, we introduce DAGR, a retrieval method that leverages both complex questions and their decomposition in subquestions to extract relevant, linked textual subgraphs. DAGR first breaks down complex queries, retrieves subgraphs guided by a weighted similarity function over both the original and decomposed queries, and creates a question-specific knowledge graph to guide answer generation. The resulting Graph-RAG pipeline is suited to handle complex multi-hop questions and effectively reason over graph-structured data. We evaluate DAGR on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa
♻ ☆ Invisible Walls in Cities: Leveraging Large Language Models to Predict Urban Segregation Experience with Social Media Content
Understanding experienced segregation in urban daily life is crucial for addressing societal inequalities and fostering inclusivity. The abundance of user-generated reviews on social media encapsulates nuanced perceptions and feelings associated with different places, offering rich insights into segregation. However, leveraging this data poses significant challenges due to its vast volume, ambiguity, and confluence of diverse perspectives. To tackle these challenges, we propose using Large Language Models (LLMs) to automate online review mining for segregation prediction. We design a Reflective LLM Coder to digest social media content into insights consistent with real-world feedback, and eventually produce a codebook capturing key dimensions that signal segregation experience, such as cultural resonance and appeal, accessibility and convenience, and community engagement and local involvement. Guided by the codebook, LLMs can generate both informative review summaries and ratings for segregation prediction. Moreover, we design a REasoning-and-EMbedding (RE'EM) framework, which combines the reasoning and embedding capabilities of language models to integrate multi-channel features for segregation prediction. Experiments on real-world data demonstrate that our framework greatly improves prediction accuracy, with a 22.79% elevation in R2 and a 9.33% reduction in MSE. The derived codebook is generalizable across three different cities, consistently improving prediction accuracy. Moreover, our user study confirms that the codebook-guided summaries provide cognitive gains for human participants in perceiving POIs' social inclusiveness. Our study marks an important step toward understanding implicit social barriers and inequalities, demonstrating the great potential of promoting social inclusiveness with AI.
comment: 11 pages, 6 figures
♻ ☆ Towards Greater Leverage: Scaling Laws for Efficient Mixture-of-Experts Language Models
Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
♻ ☆ WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training
Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
♻ ☆ ReaGAN: Node-as-Agent-Reasoning Graph Agentic Network
Graph Neural Networks (GNNs) have achieved remarkable success in graph-based learning by propagating information among neighbor nodes via predefined aggregation mechanisms. However, such fixed schemes often suffer from two key limitations. First, they cannot handle the imbalance in node informativeness -- some nodes are rich in information, while others remain sparse. Second, predefined message passing primarily leverages local structural similarity while ignoring global semantic relationships across the graph, limiting the model's ability to capture distant but relevant information. We propose Retrieval-augmented Graph Agentic Network (ReaGAN), an agent-based framework that empowers each node with autonomous, node-level decision-making. Each node acts as an agent that independently plans its next action based on its internal memory, enabling node-level planning and adaptive message propagation. Additionally, retrieval-augmented generation (RAG) allows nodes to access semantically relevant content and build global relationships in the graph. ReaGAN achieves competitive performance under few-shot in-context settings using a frozen LLM backbone without fine-tuning, showcasing the potential of agentic planning and local-global retrieval in graph learning.
comment: 17 pages, work in progress
♻ ☆ Rethinking Prompt Optimizers: From Prompt Merits to Optimization
Prompt optimization (PO) provides a practical way to improve response quality when users lack the time or expertise to manually craft effective prompts. Existing methods typically rely on LLMs' self-generation ability to optimize prompts. However, due to limited downward compatibility, the instruction-heavy prompts generated by advanced LLMs can overwhelm lightweight inference models and degrade response quality, while also lacking interpretability due to implicit optimization. In this work, we rethink prompt optimization through the lens of explicit and interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, locally deployable prompt optimizer trained on our merit-guided prompt preference dataset generated by a lightweight LLM. MePO avoids online optimization, reduces privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment.The code, model and dataset can be found in https://github.com/MidiyaZhu/MePO
comment: 28 pages, 14 figures
♻ ☆ WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch
LLM-based agents have demonstrated great potential in generating and managing code within complex codebases. In this paper, we introduce WebGen-Bench, a novel benchmark designed to measure an LLM-based agent's ability to create multi-file website codebases from scratch. It contains diverse instructions for website generation, created through the combined efforts of human annotators and GPT-4o. These instructions span three major categories and thirteen minor categories, encompassing nearly all important types of web applications. To assess the quality of the generated websites, we use GPT-4o to generate test cases targeting each functionality described in the instructions, and then manually filter, adjust, and organize them to ensure accuracy, resulting in 647 test cases. Each test case specifies an operation to be performed on the website and the expected result after the operation. To automate testing and improve reproducibility, we employ a powerful web-navigation agent to execute tests on the generated websites and determine whether the observed responses align with the expected results. We evaluate three high-performance code-agent frameworks, Bolt.diy, OpenHands, and Aider, using multiple proprietary and open-source LLMs as engines. The best-performing combination, Bolt.diy powered by DeepSeek-R1, achieves only 27.8\% accuracy on the test cases, highlighting the challenging nature of our benchmark. Additionally, we construct WebGen-Instruct, a training set consisting of 6,667 website-generation instructions. Training Qwen2.5-Coder-32B-Instruct on Bolt.diy trajectories generated from a subset of this training set achieves an accuracy of 38.2\%, surpassing the performance of the best proprietary model.
♻ ☆ EduCoder: An Open-Source Annotation System for Education Transcript Data
We introduce EduCoder, a domain-specialized tool designed to support utterance-level annotation of educational dialogue. While general-purpose text annotation tools for NLP and qualitative research abound, few address the complexities of coding education dialogue transcripts -- with diverse teacher-student and peer interactions. Common challenges include defining codebooks for complex pedagogical features, supporting both open-ended and categorical coding, and contextualizing utterances with external features, such as the lesson's purpose and the pedagogical value of the instruction. EduCoder is designed to address these challenges by providing a platform for researchers and domain experts to collaboratively define complex codebooks based on observed data. It incorporates both categorical and open-ended annotation types along with contextual materials. Additionally, it offers a side-by-side comparison of multiple annotators' responses, allowing comparison and calibration of annotations with others to improve data reliability. The system is open-source, with a demo video available.
♻ ☆ Predicting Depression in Screening Interviews from Interactive Multi-Theme Collaboration ACL2025
Automatic depression detection provides cues for early clinical intervention by clinicians. Clinical interviews for depression detection involve dialogues centered around multiple themes. Existing studies primarily design end-to-end neural network models to capture the hierarchical structure of clinical interview dialogues. However, these methods exhibit defects in modeling the thematic content of clinical interviews: 1) they fail to capture intra-theme and inter-theme correlation explicitly, and 2) they do not allow clinicians to intervene and focus on themes of interest. To address these issues, this paper introduces an interactive depression detection framework. This framework leverages in-context learning techniques to identify themes in clinical interviews and then models both intra-theme and inter-theme correlation. Additionally, it employs AI-driven feedback to simulate the interests of clinicians, enabling interactive adjustment of theme importance. PDIMC achieves absolute improvements of 35\% and 12\% compared to the state-of-the-art on the depression detection dataset DAIC-WOZ, which demonstrates the effectiveness of modeling theme correlation and incorporating interactive external feedback.
comment: Findings of ACL2025
♻ ☆ Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
comment: 9 pages, 4 figures
♻ ☆ How Far Are We from Generating Missing Modalities with Foundation Models?
Multimodal foundation models have demonstrated impressive capabilities across diverse tasks. However, their potential as plug-and-play solutions for missing modality reconstruction remains underexplored. To bridge this gap, we identify and formalize three potential paradigms for missing modality reconstruction, and perform a comprehensive evaluation across these paradigms, covering 42 model variants in terms of reconstruction accuracy and adaptability to downstream tasks. Our analysis reveals that current foundation models often fall short in two critical aspects: (i) fine-grained semantic extraction from the available modalities, and (ii) robust validation of generated modalities. These limitations lead to suboptimal and, at times, misaligned generations. To address these challenges, we propose an agentic framework tailored for missing modality reconstruction. This framework dynamically formulates modality-aware mining strategies based on the input context, facilitating the extraction of richer and more discriminative semantic features. In addition, we introduce a self-refinement mechanism, which iteratively verifies and enhances the quality of generated modalities through internal feedback. Experimental results show that our method reduces FID for missing image reconstruction by at least 14\% and MER for missing text reconstruction by at least 10\% compared to baselines. Code are released at: https://github.com/Guanzhou-Ke/AFM2.
♻ ☆ LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from \textit{Discours de la m\'ethode}, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
♻ ☆ Learning to Reason without External Rewards
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable. Code is available at https://github.com/sunblaze-ucb/Intuitor
♻ ☆ Structure-Augmented Reasoning Generation
Retrieval-Augmented Generation (RAG) systems fail at complex multi-hop reasoning because they rely on large language models to implicitly connect information from unstructured document collections. This fundamental limitation stems from treating retrieved passages as independent context rather than recognizing the intricate relationships that enable coherent reasoning chains. We introduce SARG (Structure-Augmented Reasoning Generation), a post-retrieval framework that transforms traditional RAG pipelines by materializing explicit reasoning structures. SARG extracts {cause, relation, effect} triples from retrieved documents, constructs domain-adaptive graphs, and performs multi-hop traversal to discover reasoning chains that bridge query concepts to answers. Unlike existing approaches that modify retrieval mechanisms, SARG operates as a plug-and-play reasoning layer compatible with any RAG system. Extensive evaluation across diverse domains: general QA, biomedical literature, and financial analysis demonstrates that SARG achieves substantial improvements over state-of-the-art RAG baselines. Crucially, SARG also provides full reasoning traceability through explicit inference chains, addressing the critical interpretability gap in current RAG systems. Our results establish that explicit structural reasoning is not merely beneficial but essential for reliable complex question answering, offering a solution to RAG's implicit reasoning bottleneck.
♻ ☆ ALFA: Aligning LLMs to Ask Good Questions A Case Study in Clinical Reasoning
Large language models (LLMs) often fail to ask effective questions under uncertainty, making them unreliable in domains where proactive information-gathering is essential for decision-making. We present ALignment via Fine-grained Attributes, (ALFA) a framework that improves LLM question-asking by (i) decomposing the notion of a "good" question into a set of theory-grounded attributes (e.g., clarity, relevance), (ii) controllably synthesizing attribute-specific question variations, and (iii) aligning models via preference-based optimization to explicitly learn to ask better questions along these fine-grained attributes. Focusing on clinical reasoning as a case study, we introduce the MediQ-AskDocs dataset, composed of 17k real-world clinical interactions augmented with 80k attribute-specific preference pairs of follow-up questions, as well as a novel expert-annotated interactive healthcare QA task to evaluate question-asking abilities. Models aligned with ALFA reduce diagnostic errors by 56.6% on MediQ-AskDocs compared to SoTA instruction-tuned LLMs, with a question-level win-rate of 64.4% and strong generalizability. Our findings suggest that explicitly guiding question-asking with structured, fine-grained attributes offers a scalable path to improve LLMs, especially in expert application domains.
comment: 29 pages, 8 figures, 12 tables
♻ ☆ Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models
Large language models have achieved remarkable success in recent years, primarily due to the implementation of self-attention mechanisms. However, traditional Softmax attention suffers from numerical instability and reduced performance as the length of inference tokens increases. This paper addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. We first decompose the Softmax operation into a non-linear positivity transformation and an $l_1$-normalisation step, identifying the latter as essential for maintaining model performance. In the first stage, we replace the standard exponential function with the more numerically stable Softplus activation and introduce a dynamic scale factor based on invariance entropy, creating a novel attention mechanism that outperforms conventional Softmax attention. In the second stage, we introduce a re-weighting mechanism that sharpens the attention distribution, amplifying significant weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens and fundamentally improves length extrapolation. When combined, this two-stage approach ensures numerical stability and dramatically improves length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and standard downstream benchmarks.
comment: 10 pages and 3 figures
♻ ☆ GenEscape: Hierarchical Multi-Agent Generation of Escape Room Puzzles
We challenge text-to-image models with generating escape room puzzle images that are visually appealing, logically solid, and intellectually stimulating. While base image models struggle with spatial relationships and affordance reasoning, we propose a hierarchical multi-agent framework that decomposes this task into structured stages: functional design, symbolic scene graph reasoning, layout synthesis, and local image editing. Specialized agents collaborate through iterative feedback to ensure the scene is visually coherent and functionally solvable. Experiments show that agent collaboration improves output quality in terms of solvability, shortcut avoidance, and affordance clarity, while maintaining visual quality.
♻ ☆ Evaluating Large Language Models for Automated Clinical Abstraction in Pulmonary Embolism Registries: Performance Across Model Sizes, Versions, and Parameters
Pulmonary embolism (PE) registries accelerate practice-improving research but depend on resource-intensive manual abstraction of radiology reports. We evaluated whether openly available large-language models (LLMs) can automate concept extraction from computed-tomography PE (CTPE) reports without sacrificing data quality. Four Llama-3 (L3) variants (3.0 8 B, 3.1 8 B, 3.1 70 B, 3.3 70 B) and two reviewer models Phi-4 (P4) 14 B and Gemma-3 27 B (G3) were tested on 250 dual-annotated CTPE reports each from MIMIC-IV and Duke University. Outcomes were accuracy, positive predictive value (PPV), and negative predictive value (NPV) versus a human gold standard across model sizes, temperature settings, and shot counts. Mean accuracy across all concepts increased with scale: 0.83 (L3-0 8 B), 0.91 (L3-1 8 B), and 0.96 for both 70 B variants; P4 14 B achieved 0.98; G3 matched. Accuracy differed by < 0.03 between datasets, underscoring external robustness. In dual-model concordance analysis (L3 70 B + P4 14 B), PE-presence PPV was >= 0.95 and NPV >= 0.98, while location, thrombus burden, right-heart strain, and image-quality artifacts each maintained PPV >= 0.90 and NPV >= 0.95. Fewer than 4% of individual concept annotations were discordant, and complete agreement was observed in more than 75% of reports. G3 performed comparably. LLMs therefore offer a scalable, accurate solution for PE registry abstraction, and a dual-model review workflow can further safeguard data quality with minimal human oversight.
♻ ☆ Conformal Linguistic Calibration: Trading-off between Factuality and Specificity
Language model outputs are not always reliable, thus prompting research into how to adapt model responses based on uncertainty. Common approaches include: \emph{abstention}, where models refrain from generating responses when uncertain; and \emph{linguistic calibration}, where models hedge their statements using uncertainty quantifiers. However, abstention can withhold valuable information, while linguistically calibrated responses are often challenging to leverage in downstream tasks. We propose a unified view, Conformal Linguistic Calibration (CLC), which reinterprets linguistic calibration as \emph{answer set prediction}. First we present a framework connecting abstention and linguistic calibration through the lens of linguistic pragmatics. We then describe an implementation of CLC that allows for controlling the level of imprecision in model responses. Results demonstrate our method produces calibrated outputs with conformal guarantees on factual accuracy. Further, our approach enables fine-tuning models to perform uncertainty-aware adaptive claim rewriting, offering a controllable balance between factuality and specificity.
♻ ☆ CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation
Existing reasoning evaluation frameworks for Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) predominantly assess either text-based reasoning or vision-language understanding capabilities, with limited dynamic interplay between textual and visual constraints. To address this limitation, we introduce CrossWordBench, a benchmark designed to evaluate the reasoning capabilities of both LLMs and LVLMs through the medium of crossword puzzles -- a task requiring multimodal adherence to semantic constraints from text-based clues and intersectional constraints from visual grid structures. CrossWordBench leverages a controllable puzzle generation framework that produces puzzles in two formats (text and image), supports adjustable difficulty through prefill ratio control, and offers different evaluation strategies, ranging from direct puzzle solving to interactive modes. Our extensive evaluation of over 20 models reveals that reasoning LLMs substantially outperform non-reasoning models by effectively leveraging crossing-letter constraints. We further demonstrate that LVLMs struggle with the task, showing a strong correlation between their puzzle-solving performance and grid-parsing accuracy. Our findings highlight limitations of the reasoning capabilities of current LLMs and LVLMs, and provide an effective approach for creating multimodal constrained tasks for future evaluations.
♻ ☆ A Risk Taxonomy and Reflection Tool for Large Language Model Adoption in Public Health
Recent breakthroughs in large language models (LLMs) have generated both interest and concern about their potential adoption as information sources or communication tools across different domains. In public health, where stakes are high and impacts extend across diverse populations, adopting LLMs poses unique challenges that require thorough evaluation. However, structured approaches for assessing potential risks in public health remain under-explored. To address this gap, we conducted focus groups with public health professionals and individuals with lived experience to unpack their concerns, situated across three distinct and critical public health issues that demand high-quality information: infectious disease prevention (vaccines), chronic and well-being care (opioid use disorder), and community health and safety (intimate partner violence). We synthesize participants' perspectives into a risk taxonomy, identifying and contextualizing the potential harms LLMs may introduce when positioned alongside traditional health communication. This taxonomy highlights four dimensions of risk to individuals, human-centered care, information ecosystem, and technology accountability. For each dimension, we unpack specific risks and offer example reflection questions to help practitioners adopt a risk-reflexive approach. By summarizing distinctive LLM characteristics and linking them to identified risks, we discuss the need to revisit prior mental models of information behaviors and complement evaluations with external validity and domain expertise through lived experience and real-world practices. Together, this work contributes a shared vocabulary and reflection tool for people in both computing and public health to collaboratively anticipate, evaluate, and mitigate risks in deciding when to employ LLM capabilities (or not) and how to mitigate harm.
♻ ☆ Adaptive Computation Pruning for the Forgetting Transformer
The recently proposed Forgetting Transformer (FoX) incorporates a forget gate into softmax attention and has shown consistently better or on-par performance compared to the standard RoPE-based Transformer. Notably, many attention heads in FoX tend to forget quickly, causing their output at each timestep to rely primarily on local context. Based on this observation, we propose Adaptive Computation Pruning (ACP) for FoX, a method that dynamically prunes computations involving input-output dependencies that are strongly decayed by the forget gate. In particular, our method performs provably safe pruning via a dynamically set pruning threshold that guarantees the pruned attention weights are negligible. We apply ACP to language model pretraining with FoX and show it consistently reduces the number of FLOPs and memory accesses in softmax attention by around 70% across different model sizes and context lengths, resulting in a roughly 50% to 70% reduction in attention runtime (or a 2-3$\times$ speedup) and a roughly 10% to 40% increase in end-to-end training throughput. Furthermore, longer context lengths yield greater computational savings. All these speed improvements are achieved without any performance degradation. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.
comment: Published as a conference paper at COLM 2025
♻ ☆ Mitigating Hallucination in Large Vision-Language Models via Adaptive Attention Calibration
Large vision-language models (LVLMs) achieve impressive performance on multimodal tasks but often suffer from hallucination, and confidently describe objects or attributes not present in the image. Current training-free interventions struggle to maintain accuracy in open-ended and long-form generation scenarios. We introduce the Confidence-Aware Attention Calibration (CAAC) framework to address this challenge by targeting two key biases: spatial perception bias, which distributes attention disproportionately across image tokens, and modality bias, which shifts focus from visual to textual inputs over time. CAAC employs a two-step approach: Visual-Token Calibration (VTC) to balance attention across visual tokens, and Adaptive Attention Re-Scaling (AAR) to reinforce visual grounding guided by the model's confidence. This confidence-driven adjustment ensures consistent visual alignment during generation. Experiments on CHAIR, AMBER, and POPE benchmarks demonstrate that CAAC outperforms baselines, particularly in long-form generations, effectively reducing hallucination.
♻ ☆ REINA: Regularized Entropy Information-Based Loss for Efficient Simultaneous Speech Translation
Simultaneous Speech Translation (SimulST) systems stream in audio while simultaneously emitting translated text or speech. Such systems face the significant challenge of balancing translation quality and latency. We introduce a strategy to optimize this tradeoff: wait for more input only if you gain information by doing so. Based on this strategy, we present Regularized Entropy INformation Adaptation (REINA), a novel loss to train an adaptive policy using an existing non-streaming translation model. We derive REINA from information theory principles and show that REINA helps push the reported Pareto frontier of the latency/quality tradeoff over prior works. Utilizing REINA, we train a SimulST model on French, Spanish and German, both from and into English. Training on only open source or synthetically generated data, we achieve state-of-the-art (SOTA) streaming results for models of comparable size. We also introduce a metric for streaming efficiency, quantitatively showing REINA improves the latency/quality trade-off by as much as 21% compared to prior approaches, normalized against non-streaming baseline BLEU scores.
♻ ☆ AI Pedagogy: Dialogic Social Learning for Artificial Agents
Large Language Models (LLMs) have demonstrated remarkable capabilities in processing extensive offline datasets. However, they often face challenges in acquiring and integrating complex, knowledge online. Traditional AI training paradigms, predominantly based on supervised learning or reinforcement learning, mirror a 'Piagetian' model of independent exploration. These approaches typically rely on large datasets and sparse feedback signals, limiting the models' ability to learn efficiently from interactions. Drawing inspiration from Vygotsky's sociocultural theory, this study explores the potential of socially mediated learning paradigms to address these limitations. We introduce a dynamic environment, termed the 'AI Social Gym', where an AI learner agent engages in dyadic pedagogical dialogues with knowledgeable AI teacher agents. These interactions emphasize external, structured dialogue as a core mechanism for knowledge acquisition, contrasting with methods that depend solely on internal inference or pattern recognition. Our investigation focuses on how different pedagogical strategies impact the AI learning process in the context of ontology acquisition. Empirical results indicate that such dialogic approaches-particularly those involving mixed-direction interactions combining top-down explanations with learner-initiated questioning-significantly enhance the LLM's ability to acquire and apply new knowledge, outperforming both unidirectional instructional methods and direct access to structured knowledge, formats typically present in training datasets. These findings suggest that integrating pedagogical and psychological insights into AI and robot training can substantially improve post-training knowledge acquisition and response quality. This approach offers a complementary pathway to existing strategies like prompt engineering
comment: accepted at ICSR2025
♻ ☆ VisionUnite: A Vision-Language Foundation Model for Ophthalmology Enhanced with Clinical Knowledge
The need for improved diagnostic methods in ophthalmology is acute, especially in the underdeveloped regions with limited access to specialists and advanced equipment. Therefore, we introduce VisionUnite, a novel vision-language foundation model for ophthalmology enhanced with clinical knowledge. VisionUnite has been pretrained on an extensive dataset comprising 1.24 million image-text pairs, and further refined using our proposed MMFundus dataset, which includes 296,379 high-quality fundus image-text pairs and 889,137 simulated doctor-patient dialogue instances. Our experiments indicate that VisionUnite outperforms existing generative foundation models such as GPT-4V and Gemini Pro. It also demonstrates diagnostic capabilities comparable to junior ophthalmologists. VisionUnite performs well in various clinical scenarios including open-ended multi-disease diagnosis, clinical explanation, and patient interaction, making it a highly versatile tool for initial ophthalmic disease screening. VisionUnite can also serve as an educational aid for junior ophthalmologists, accelerating their acquisition of knowledge regarding both common and underrepresented ophthalmic conditions. VisionUnite represents a significant advancement in ophthalmology, with broad implications for diagnostics, medical education, and understanding of disease mechanisms. The source code is at https://github.com/HUANGLIZI/VisionUnite.
comment: Accepted by IEEE TPAMI, 14 pages, 15 tables, 4 figures with Appendix
Information Retrieval 27
☆ HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.
comment: Code and datasets are available at https://github.com/plageon/HierSearch
☆ Multi-modal Adaptive Mixture of Experts for Cold-start Recommendation
Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.
☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
☆ Early Explorations of Recommender Systems for Physical Activity and Well-being RecSys 2025
As recommender systems increasingly guide physical actions, often through wearables and coaching tools, new challenges arise around how users interpret, trust, and respond to this advice. This paper introduces a conceptual framework for tangible recommendations that influence users' bodies, routines, and well-being. We describe three design dimensions: trust and interpretation, intent alignment, and consequence awareness. These highlight key limitations in applying conventional recommender logic to embodied settings. Through examples and design reflections, we outline how future systems can support long-term well-being, behavioral alignment, and socially responsible personalization.
comment: Second International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood) in conjunction with ACM RecSys 2025
☆ Improving Document Retrieval Coherence for Semantically Equivalent Queries
Dense Retrieval (DR) models have proven to be effective for Document Retrieval and Information Grounding tasks. Usually, these models are trained and optimized for improving the relevance of top-ranked documents for a given query. Previous work has shown that popular DR models are sensitive to the query and document lexicon: small variations of it may lead to a significant difference in the set of retrieved documents. In this paper, we propose a variation of the Multi-Negative Ranking loss for training DR that improves the coherence of models in retrieving the same documents with respect to semantically similar queries. The loss penalizes discrepancies between the top-k ranked documents retrieved for diverse but semantic equivalent queries. We conducted extensive experiments on various datasets, MS-MARCO, Natural Questions, BEIR, and TREC DL 19/20. The results show that (i) models optimizes by our loss are subject to lower sensitivity, and, (ii) interestingly, higher accuracy.
☆ Careful Queries, Credible Results: Teaching RAG Models Advanced Web Search Tools with Reinforcement Learning
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating up-to-date external knowledge, yet real-world web environments present unique challenges. These limitations manifest as two key challenges: pervasive misinformation in the web environment, which introduces unreliable or misleading content that can degrade retrieval accuracy, and the underutilization of web tools, which, if effectively employed, could enhance query precision and help mitigate this noise, ultimately improving the retrieval results in RAG systems. To address these issues, we propose WebFilter, a novel RAG framework that generates source-restricted queries and filters out unreliable content. This approach combines a retrieval filtering mechanism with a behavior- and outcome-driven reward strategy, optimizing both query formulation and retrieval outcomes. Extensive experiments demonstrate that WebFilter improves answer quality and retrieval precision, outperforming existing RAG methods on both in-domain and out-of-domain benchmarks.
☆ Meta Off-Policy Estimation RecSys '25
Off-policy estimation (OPE) methods enable unbiased offline evaluation of recommender systems, directly estimating the online reward some target policy would have obtained, from offline data and with statistical guarantees. The theoretical elegance of the framework combined with practical successes have led to a surge of interest, with many competing estimators now available to practitioners and researchers. Among these, Doubly Robust methods provide a prominent strategy to combine value- and policy-based estimators. In this work, we take an alternative perspective to combine a set of OPE estimators and their associated confidence intervals into a single, more accurate estimate. Our approach leverages a correlated fixed-effects meta-analysis framework, explicitly accounting for dependencies among estimators that arise due to shared data. This yields a best linear unbiased estimate (BLUE) of the target policy's value, along with an appropriately conservative confidence interval that reflects inter-estimator correlation. We validate our method on both simulated and real-world data, demonstrating improved statistical efficiency over existing individual estimators.
comment: To appear in the Nineteenth ACM Conference on Recommender Systems (RecSys '25)
☆ Recommendation Is a Dish Better Served Warm RecSys 2025
In modern recommender systems, experimental settings typically include filtering out cold users and items based on a minimum interaction threshold. However, these thresholds are often chosen arbitrarily and vary widely across studies, leading to inconsistencies that can significantly affect the comparability and reliability of evaluation results. In this paper, we systematically explore the cold-start boundary by examining the criteria used to determine whether a user or an item should be considered cold. Our experiments incrementally vary the number of interactions for different items during training, and gradually update the length of user interaction histories during inference. We investigate the thresholds across several widely used datasets, commonly represented in recent papers from top-tier conferences, and on multiple established recommender baselines. Our findings show that inconsistent selection of cold-start thresholds can either result in the unnecessary removal of valuable data or lead to the misclassification of cold instances as warm, introducing more noise into the system.
comment: Accepted for ACM RecSys 2025. Author's version. The final published version will be available at the ACM Digital Library
☆ Encode Me If You Can: Learning Universal User Representations via Event Sequence Autoencoding
Building universal user representations that capture the essential aspects of user behavior is a crucial task for modern machine learning systems. In real-world applications, a user's historical interactions often serve as the foundation for solving a wide range of predictive tasks, such as churn prediction, recommendations, or lifetime value estimation. Using a task-independent user representation that is effective across all such tasks can reduce the need for task-specific feature engineering and model retraining, leading to more scalable and efficient machine learning pipelines. The goal of the RecSys Challenge 2025 by Synerise was to develop such Universal Behavioral Profiles from logs of past user behavior, which included various types of events such as product purchases, page views, and search queries. We propose a method that transforms the entire user interaction history into a single chronological sequence and trains a GRU-based autoencoder to reconstruct this sequence from a fixed-size vector. If the model can accurately reconstruct the sequence, the latent vector is expected to capture the key behavioral patterns. In addition to this core model, we explored several alternative methods for generating user embeddings and combined them by concatenating their output vectors into a unified representation. This ensemble strategy further improved generalization across diverse downstream tasks and helped our team, ai_lab_recsys, achieve second place in the RecSys Challenge 2025.
☆ MLego: Interactive and Scalable Topic Exploration Through Model Reuse
With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
comment: 14 pages
☆ UMRE: A Unified Monotonic Transformation for Ranking Ensemble in Recommender Systems
Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
☆ Towards Comprehensible Recommendation with Large Language Model Fine-tuning
Recommender systems have become increasingly ubiquitous in daily life. While traditional recommendation approaches primarily rely on ID-based representations or item-side content features, they often fall short in capturing the underlying semantics aligned with user preferences (e.g., recommendation reasons for items), leading to a semantic-collaborative gap. Recently emerged LLM-based feature extraction approaches also face a key challenge: how to ensure that LLMs possess recommendation-aligned reasoning capabilities and can generate accurate, personalized reasons to mitigate the semantic-collaborative gap. To address these issues, we propose a novel Content Understanding from a Collaborative Perspective framework (CURec), which generates collaborative-aligned content features for more comprehensive recommendations. \method first aligns the LLM with recommendation objectives through pretraining, equipping it with instruction-following and chain-of-thought reasoning capabilities. Next, we design a reward model inspired by traditional recommendation architectures to evaluate the quality of the recommendation reasons generated by the LLM. Finally, using the reward signals, CURec fine-tunes the LLM through RL and corrects the generated reasons to ensure their accuracy. The corrected reasons are then integrated into a downstream recommender model to enhance comprehensibility and recommendation performance. Extensive experiments on public benchmarks demonstrate the superiority of CURec over existing methods.
comment: 11 pages, 6 figures
☆ Orthogonal Low Rank Embedding Stabilization
The instability of embedding spaces across model retraining cycles presents significant challenges to downstream applications using user or item embeddings derived from recommendation systems as input features. This paper introduces a novel orthogonal low-rank transformation methodology designed to stabilize the user/item embedding space, ensuring consistent embedding dimensions across retraining sessions. Our approach leverages a combination of efficient low-rank singular value decomposition and orthogonal Procrustes transformation to map embeddings into a standardized space. This transformation is computationally efficient, lossless, and lightweight, preserving the dot product and inference quality while reducing operational burdens. Unlike existing methods that modify training objectives or embedding structures, our approach maintains the integrity of the primary model application and can be seamlessly integrated with other stabilization techniques.
☆ Using LLMs to Capture Users' Temporal Context for Recommendation
Effective recommender systems demand dynamic user understanding, especially in complex, evolving environments. Traditional user profiling often fails to capture the nuanced, temporal contextual factors of user preferences, such as transient short-term interests and enduring long-term tastes. This paper presents an assessment of Large Language Models (LLMs) for generating semantically rich, time-aware user profiles. We do not propose a novel end-to-end recommendation architecture; instead, the core contribution is a systematic investigation into the degree of LLM effectiveness in capturing the dynamics of user context by disentangling short-term and long-term preferences. This approach, framing temporal preferences as dynamic user contexts for recommendations, adaptively fuses these distinct contextual components into comprehensive user embeddings. The evaluation across Movies&TV and Video Games domains suggests that while LLM-generated profiles offer semantic depth and temporal structure, their effectiveness for context-aware recommendations is notably contingent on the richness of user interaction histories. Significant gains are observed in dense domains (e.g., Movies&TV), whereas improvements are less pronounced in sparse environments (e.g., Video Games). This work highlights LLMs' nuanced potential in enhancing user profiling for adaptive, context-aware recommendations, emphasizing the critical role of dataset characteristics for practical applicability.
☆ Temporal User Profiling with LLMs: Balancing Short-Term and Long-Term Preferences for Recommendations
Accurately modeling user preferences is crucial for improving the performance of content-based recommender systems. Existing approaches often rely on simplistic user profiling methods, such as averaging or concatenating item embeddings, which fail to capture the nuanced nature of user preference dynamics, particularly the interactions between long-term and short-term preferences. In this work, we propose LLM-driven Temporal User Profiling (LLM-TUP), a novel method for user profiling that explicitly models short-term and long-term preferences by leveraging interaction timestamps and generating natural language representations of user histories using a large language model (LLM). These representations are encoded into high-dimensional embeddings using a pre-trained BERT model, and an attention mechanism is applied to dynamically fuse the short-term and long-term embeddings into a comprehensive user profile. Experimental results on real-world datasets demonstrate that LLM-TUP achieves substantial improvements over several baselines, underscoring the effectiveness of our temporally aware user-profiling approach and the use of semantically rich user profiles, generated by LLMs, for personalized content-based recommendation.
☆ Generating Query-Relevant Document Summaries via Reinforcement Learning
E-commerce search engines often rely solely on product titles as input for ranking models with latency constraints. However, this approach can result in suboptimal relevance predictions, as product titles often lack sufficient detail to capture query intent. While product descriptions provide richer information, their verbosity and length make them unsuitable for real-time ranking, particularly for computationally expensive architectures like cross-encoder ranking models. To address this challenge, we propose ReLSum, a novel reinforcement learning framework designed to generate concise, query-relevant summaries of product descriptions optimized for search relevance. ReLSum leverages relevance scores as rewards to align the objectives of summarization and ranking, effectively overcoming limitations of prior methods, such as misaligned learning targets. The framework employs a trainable large language model (LLM) to produce summaries, which are then used as input for a cross-encoder ranking model. Experimental results demonstrate significant improvements in offline metrics, including recall and NDCG, as well as online user engagement metrics. ReLSum provides a scalable and efficient solution for enhancing search relevance in large-scale e-commerce systems.
♻ ☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
♻ ☆ WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent
Web agents such as Deep Research have demonstrated superhuman cognitive abilities, capable of solving highly challenging information-seeking problems. However, most research remains primarily text-centric, overlooking visual information in the real world. This makes multimodal Deep Research highly challenging, as such agents require much stronger reasoning abilities in perception, logic, knowledge, and the use of more sophisticated tools compared to text-based agents. To address this limitation, we introduce WebWatcher, a multi-modal Agent for Deep Research equipped with enhanced visual-language reasoning capabilities. It leverages high-quality synthetic multimodal trajectories for efficient cold start training, utilizes various tools for deep reasoning, and further enhances generalization through reinforcement learning. To better evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a benchmark with BrowseComp-style that requires complex information retrieval involving both visual and textual information. Experimental results show that WebWatcher significantly outperforms proprietary baseline, RAG workflow and open-source agents in four challenging VQA benchmarks, which paves the way for solving complex multimodal information-seeking tasks.
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Personalizing language models by effectively incorporating user interaction history remains a central challenge in the development of adaptive AI systems. While large language models (LLMs) combined with Retrieval-Augmented Generation (RAG) have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graphs, automatically constructed and updated by the LLM itself, and capable of encoding information in multiple formats-including nodes, triplets, higher-order propositions, and episodic traces. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyperedges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle propagation, beam search, and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks-TriviaQA, HotpotQA, and DiaASQ-demonstrating that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ On the Reliability of Sampling Strategies in Offline Recommender Evaluation RecSys 2025
Offline evaluation plays a central role in benchmarking recommender systems when online testing is impractical or risky. However, it is susceptible to two key sources of bias: exposure bias, where users only interact with items they are shown, and sampling bias, introduced when evaluation is performed on a subset of logged items rather than the full catalog. While prior work has proposed methods to mitigate sampling bias, these are typically assessed on fixed logged datasets rather than for their ability to support reliable model comparisons under varying exposure conditions or relative to true user preferences. In this paper, we investigate how different combinations of logging and sampling choices affect the reliability of offline evaluation. Using a fully observed dataset as ground truth, we systematically simulate diverse exposure biases and assess the reliability of common sampling strategies along four dimensions: sampling resolution (recommender model separability), fidelity (agreement with full evaluation), robustness (stability under exposure bias), and predictive power (alignment with ground truth). Our findings highlight when and how sampling distorts evaluation outcomes and offer practical guidance for selecting strategies that yield faithful and robust offline comparisons.
comment: Accepted to RecSys 2025
♻ ☆ Recommender Systems for Social Good: The Role of Accountability and Sustainability
This work examines the role of recommender systems in promoting sustainability, social responsibility, and accountability, with a focus on alignment with the United Nations Sustainable Development Goals (SDGs). As recommender systems become increasingly integrated into daily interactions, they must go beyond personalization to support responsible consumption, reduce environmental impact, and foster social good. We explore strategies to mitigate the carbon footprint of recommendation models, ensure fairness, and implement accountability mechanisms. By adopting these approaches, recommender systems can contribute to sustainable and socially beneficial outcomes, aligning technological advancements with the SDGs focused on environmental sustainability and social well-being.
comment: First International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood'24)
♻ ☆ DAGR: Decomposition Augmented Graph Retrieval with LLMs
Large Language Models (LLMs) excel at many Natural Language Processing (NLP) tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To address this challenge, we introduce DAGR, a retrieval method that leverages both complex questions and their decomposition in subquestions to extract relevant, linked textual subgraphs. DAGR first breaks down complex queries, retrieves subgraphs guided by a weighted similarity function over both the original and decomposed queries, and creates a question-specific knowledge graph to guide answer generation. The resulting Graph-RAG pipeline is suited to handle complex multi-hop questions and effectively reason over graph-structured data. We evaluate DAGR on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ Scaling Transformers for Discriminative Recommendation via Generative Pretraining KDD'25
Discriminative recommendation tasks, such as CTR (click-through rate) and CVR (conversion rate) prediction, play critical roles in the ranking stage of large-scale industrial recommender systems. However, training a discriminative model encounters a significant overfitting issue induced by data sparsity. Moreover, this overfitting issue worsens with larger models, causing them to underperform smaller ones. To address the overfitting issue and enhance model scalability, we propose a framework named GPSD (\textbf{G}enerative \textbf{P}retraining for \textbf{S}calable \textbf{D}iscriminative Recommendation), drawing inspiration from generative training, which exhibits no evident signs of overfitting. GPSD leverages the parameters learned from a pretrained generative model to initialize a discriminative model, and subsequently applies a sparse parameter freezing strategy. Extensive experiments conducted on both industrial-scale and publicly available datasets demonstrate the superior performance of GPSD. Moreover, it delivers remarkable improvements in online A/B tests. GPSD offers two primary advantages: 1) it substantially narrows the generalization gap in model training, resulting in better test performance; and 2) it leverages the scalability of Transformers, delivering consistent performance gains as models are scaled up. Specifically, we observe consistent performance improvements as the model dense parameters scale from 13K to 0.3B, closely adhering to power laws. These findings pave the way for unifying the architectures of recommendation models and language models, enabling the direct application of techniques well-established in large language models to recommendation models. The code is available at https://github.com/chqiwang/gpsd-rec.
comment: KDD'25
♻ ☆ R4ec: A Reasoning, Reflection, and Refinement Framework for Recommendation Systems
Harnessing Large Language Models (LLMs) for recommendation systems has emerged as a prominent avenue, drawing substantial research interest. However, existing approaches primarily involve basic prompt techniques for knowledge acquisition, which resemble System-1 thinking. This makes these methods highly sensitive to errors in the reasoning path, where even a small mistake can lead to an incorrect inference. To this end, in this paper, we propose $R^{4}$ec, a reasoning, reflection and refinement framework that evolves the recommendation system into a weak System-2 model. Specifically, we introduce two models: an actor model that engages in reasoning, and a reflection model that judges these responses and provides valuable feedback. Then the actor model will refine its response based on the feedback, ultimately leading to improved responses. We employ an iterative reflection and refinement process, enabling LLMs to facilitate slow and deliberate System-2-like thinking. Ultimately, the final refined knowledge will be incorporated into a recommendation backbone for prediction. We conduct extensive experiments on Amazon-Book and MovieLens-1M datasets to demonstrate the superiority of $R^{4}$ec. We also deploy $R^{4}$ec on a large scale online advertising platform, showing 2.2\% increase of revenue. Furthermore, we investigate the scaling properties of the actor model and reflection model.
comment: Accepted by Recsys25
♻ ☆ Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Large embedding tables are indispensable in modern recommendation systems, thanks to their ability to effectively capture and memorize intricate details of interactions among diverse entities. As we explore integrating large embedding tables into Pinterest's ads ranking models, we encountered not only common challenges such as sparsity and scalability, but also several obstacles unique to our context. Notably, our initial attempts to train large embedding tables from scratch resulted in neutral metrics. To tackle this, we introduced a novel multi-faceted pretraining scheme that incorporates multiple pretraining algorithms. This approach greatly enriched the embedding tables and resulted in significant performance improvements. As a result, the multi-faceted large embedding tables bring great performance gain on both the Click-Through Rate (CTR) and Conversion Rate (CVR) domains. Moreover, we designed a CPU-GPU hybrid serving infrastructure to overcome GPU memory limits and elevate the scalability. This framework has been deployed in the Pinterest Ads system and achieved 1.34% online CPC reduction and 2.60% CTR increase with neutral end-to-end latency change.
♻ ☆ Mixture-of-RAG: Integrating Text and Tables with Large Language Models
Large language models (LLMs) achieve optimal utility when their responses are grounded in external knowledge sources. However, real-world documents, such as annual reports, scientific papers, and clinical guidelines, frequently combine extensive narrative content with complex, hierarchically structured tables. While existing retrieval-augmented generation (RAG) systems effectively integrate LLMs' generative capabilities with external retrieval-based information, their performance significantly deteriorates when processing such heterogeneous text-table hierarchies. To address this limitation, we formalize the task of Heterogeneous Document RAG, which requires joint retrieval and reasoning across textual and hierarchical tabular data. We propose MixRAG, a novel three-stage framework: (i) hierarchy row-and-column-level (H-RCL) representation that preserves hierarchical structure and heterogeneous relationships, (ii) an ensemble retriever with LLM-based reranking for evidence alignment, and (iii) multi-step reasoning decomposition via a RECAP prompt strategy. To bridge the gap in available data for this domain, we release a large-scale dataset, DocRAGLib, a 2k-document corpus paired with automatically aligned text-table summaries and gold document annotations. The comprehensive experimental results demonstrate that MixRAG boosts top-1 retrieval by 46% over strong text-only, table-only, and naive-mixture baselines, establishing new state-of-the-art performance for mixed-modality document grounding.
comment: 10 pages, 4 figures
Computation and Language 58
☆ Democratizing Diplomacy: A Harness for Evaluating Any Large Language Model on Full-Press Diplomacy
We present the first evaluation harness that enables any out-of-the-box, local, Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning or specialized training. Previous work required frontier LLMs, or fine-tuning, due to the high complexity and information density of Diplomacy's game state. Combined with the high variance of matches, these factors made Diplomacy prohibitive for study. In this work, we used data-driven iteration to optimize a textual game state representation such that a 24B model can reliably complete matches without any fine tuning. We develop tooling to facilitate hypothesis testing and statistical analysis, and we present case studies on persuasion, aggressive playstyles, and performance across a range of models. We conduct a variety of experiments across many popular LLMs, finding the larger models perform the best, but the smaller models still play adequately. We also introduce Critical State Analysis: an experimental protocol for rapidly iterating and analyzing key moments in a game at depth. Our harness democratizes the evaluation of strategic reasoning in LLMs by eliminating the need for fine-tuning, and it provides insights into how these capabilities emerge naturally from widely used LLMs. Our code is available in the supplement and will be open sourced.
☆ ALOPE: Adaptive Layer Optimization for Translation Quality Estimation using Large Language Models
Large Language Models (LLMs) have shown remarkable performance across a wide range of natural language processing tasks. Quality Estimation (QE) for Machine Translation (MT), which assesses the quality of a source-target pair without relying on reference translations, remains a challenging cross-lingual task for LLMs. The challenges stem from the inherent limitations of existing LLM-based QE systems, which are pre-trained for causal language modelling rather than regression-specific tasks, further elevated by the presence of low-resource languages given pre-training data distribution. This paper introduces ALOPE, an adaptive layer-optimization framework designed to enhance LLM-based QE by restructuring Transformer representations through layer-wise adaptation for improved regression-based prediction. Our framework integrates low-rank adapters (LoRA) with regression task heads, leveraging selected pre-trained Transformer layers for improved cross-lingual alignment. In addition to the layer-specific adaptation, ALOPE introduces two strategies-dynamic weighting, which adaptively combines representations from multiple layers, and multi-head regression, which aggregates regression losses from multiple heads for QE. Our framework shows improvements over various existing LLM-based QE approaches. Empirical evidence suggests that intermediate Transformer layers in LLMs provide contextual representations that are more aligned with the cross-lingual nature of the QE task. We make resultant models and framework code publicly available for further research, also allowing existing LLM-based MT frameworks to be scaled with QE capabilities.
comment: Accepted to COLM 2025 Conference
☆ Positional Biases Shift as Inputs Approach Context Window Limits
Large Language Models (LLMs) often struggle to use information across long inputs effectively. Prior work has identified positional biases, such as the Lost in the Middle (LiM) effect, where models perform better when information appears at the beginning (primacy bias) or end (recency bias) of the input, rather than in the middle. However, long-context studies have not consistently replicated these effects, raising questions about their intensity and the conditions under which they manifest. To address this, we conducted a comprehensive analysis using relative rather than absolute input lengths, defined with respect to each model's context window. Our findings reveal that the LiM effect is strongest when inputs occupy up to 50% of a model's context window. Beyond that, the primacy bias weakens, while recency bias remains relatively stable. This effectively eliminates the LiM effect; instead, we observe a distance-based bias, where model performance is better when relevant information is closer to the end of the input. Furthermore, our results suggest that successful retrieval is a prerequisite for reasoning in LLMs, and that the observed positional biases in reasoning are largely inherited from retrieval. These insights have implications for long-context tasks, the design of future LLM benchmarks, and evaluation methodologies for LLMs handling extended inputs.
☆ CP-Agent: Agentic Constraint Programming
Translating natural language problem descriptions into formal constraint models remains a fundamental challenge in constraint programming, requiring deep expertise in both the problem domain and modeling frameworks. Previous approaches to automating this translation have employed fixed workflows with predetermined modeling steps, failing on a significant number of benchmark problems. We present a new approach using a pure agentic strategy without any fixed pipeline. We developed a general-purpose Python coding agent based on the ReAct (Reason and Act) principle, utilizing a persistent IPython kernel for stateful code execution and iterative development. Rather than embedding constraint programming logic into the agent architecture, domain-specific expertise is injected solely through a carefully crafted project prompt. The agent combines this prompt-encoded knowledge with access to file operations and code execution tools, enabling it to test hypotheses, debug failures, and verify solutions dynamically. Implemented in just a few hundred lines of code, this architecture successfully solves all 101 problems of the CP-Bench constraint programming benchmark set. The results suggest that constraint modeling tasks require the combination of general coding tools and domain expertise encoded in prompts, rather than specialized agent architectures or predefined workflows.
☆ Let's Revise Step-by-Step: A Unified Local Search Framework for Code Generation with LLMs
Large Language Models (LLMs) with inference-time scaling techniques show promise for code generation, yet face notable efficiency and scalability challenges. Construction-based tree-search methods suffer from rapid growth in tree size, high token consumption, and lack of anytime property. In contrast, improvement-based methods offer better performance but often struggle with uninformative reward signals and inefficient search strategies. In this work, we propose \textbf{ReLoc}, a unified local search framework which effectively performs step-by-step code revision. Specifically, ReLoc explores a series of local revisions through four key algorithmic components: initial code drafting, neighborhood code generation, candidate evaluation, and incumbent code updating, each of which can be instantiated with specific decision rules to realize different local search algorithms such as Hill Climbing (HC) or Genetic Algorithm (GA). Furthermore, we develop a specialized revision reward model that evaluates code quality based on revision distance to produce fine-grained preferences that guide the local search toward more promising candidates. Finally, our extensive experimental results demonstrate that our approach achieves superior performance across diverse code generation tasks, significantly outperforming both construction-based tree search as well as the state-of-the-art improvement-based code generation methods.
☆ Grounding Multilingual Multimodal LLMs With Cultural Knowledge
Multimodal Large Language Models excel in high-resource settings, but often misinterpret long-tail cultural entities and underperform in low-resource languages. To address this gap, we propose a data-centric approach that directly grounds MLLMs in cultural knowledge. Leveraging a large scale knowledge graph from Wikidata, we collect images that represent culturally significant entities, and generate synthetic multilingual visual question answering data. The resulting dataset, CulturalGround, comprises 22 million high-quality, culturally-rich VQA pairs spanning 42 countries and 39 languages. We train an open-source MLLM CulturalPangea on CulturalGround, interleaving standard multilingual instruction-tuning data to preserve general abilities. CulturalPangea achieves state-of-the-art performance among open models on various culture-focused multilingual multimodal benchmarks, outperforming prior models by an average of 5.0 without degrading results on mainstream vision-language tasks. Our findings show that our targeted, culturally grounded approach could substantially narrow the cultural gap in MLLMs and offer a practical path towards globally inclusive multimodal systems.
☆ Event-Aware Sentiment Factors from LLM-Augmented Financial Tweets: A Transparent Framework for Interpretable Quant Trading ICML 2025
In this study, we wish to showcase the unique utility of large language models (LLMs) in financial semantic annotation and alpha signal discovery. Leveraging a corpus of company-related tweets, we use an LLM to automatically assign multi-label event categories to high-sentiment-intensity tweets. We align these labeled sentiment signals with forward returns over 1-to-7-day horizons to evaluate their statistical efficacy and market tradability. Our experiments reveal that certain event labels consistently yield negative alpha, with Sharpe ratios as low as -0.38 and information coefficients exceeding 0.05, all statistically significant at the 95\% confidence level. This study establishes the feasibility of transforming unstructured social media text into structured, multi-label event variables. A key contribution of this work is its commitment to transparency and reproducibility; all code and methodologies are made publicly available. Our results provide compelling evidence that social media sentiment is a valuable, albeit noisy, signal in financial forecasting and underscore the potential of open-source frameworks to democratize algorithmic trading research.
comment: 16 pages, 12 figures, accepted at ICML 2025 New in ML Workshop
☆ A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.
☆ Generative AI for Strategic Plan Development
Given recent breakthroughs in Generative Artificial Intelligence (GAI) and Large Language Models (LLMs), more and more professional services are being augmented through Artificial Intelligence (AI), which once seemed impossible to automate. This paper presents a modular model for leveraging GAI in developing strategic plans for large scale government organizations and evaluates leading machine learning techniques in their application towards one of the identified modules. Specifically, the performance of BERTopic and Non-negative Matrix Factorization (NMF) are evaluated in their ability to use topic modeling to generate themes representative of Vision Elements within a strategic plan. To accomplish this, BERTopic and NMF models are trained using a large volume of reports from the Government Accountability Office (GAO). The generated topics from each model are then scored for similarity against the Vision Elements of a published strategic plan and the results are compared. Our results show that these techniques are capable of generating themes similar to 100% of the elements being evaluated against. Further, we conclude that BERTopic performs best in this application with more than half of its correlated topics achieving a "medium" or "strong" correlation. A capability of GAI-enabled strategic plan development impacts a multi-billion dollar industry and assists the federal government in overcoming regulatory requirements which are crucial to the public good. Further work will focus on the operationalization of the concept proven in this study as well as viability of the remaining modules in the proposed model for GAI-generated strategic plans.
comment: 11 pages, 9 figures
☆ Think Before You Talk: Enhancing Meaningful Dialogue Generation in Full-Duplex Speech Language Models with Planning-Inspired Text Guidance
Full-Duplex Speech Language Models (FD-SLMs) are specialized foundation models designed to enable natural, real-time spoken interactions by modeling complex conversational dynamics such as interruptions, backchannels, and overlapping speech, and End-to-end (e2e) FD-SLMs leverage real-world double-channel conversational data to capture nuanced two-speaker dialogue patterns for human-like interactions. However, they face a critical challenge -- their conversational abilities often degrade compared to pure-text conversation due to prolonged speech sequences and limited high-quality spoken dialogue data. While text-guided speech generation could mitigate these issues, it suffers from timing and length issues when integrating textual guidance into double-channel audio streams, disrupting the precise time alignment essential for natural interactions. To address these challenges, we propose TurnGuide, a novel planning-inspired approach that mimics human conversational planning by dynamically segmenting assistant speech into dialogue turns and generating turn-level text guidance before speech output, which effectively resolves both insertion timing and length challenges. Extensive experiments demonstrate our approach significantly improves e2e FD-SLMs' conversational abilities, enabling them to generate semantically meaningful and coherent speech while maintaining natural conversational flow. Demos are available at https://dreamtheater123.github.io/TurnGuide-Demo/. Code will be available at https://github.com/dreamtheater123/TurnGuide.
comment: Work in progress
☆ Rethinking Domain-Specific LLM Benchmark Construction: A Comprehensiveness-Compactness Approach
Numerous benchmarks have been built to evaluate the domain-specific abilities of large language models (LLMs), highlighting the need for effective and efficient benchmark construction. Existing domain-specific benchmarks primarily focus on the scaling law, relying on massive corpora for supervised fine-tuning or generating extensive question sets for broad coverage. However, the impact of corpus and question-answer (QA) set design on the precision and recall of domain-specific LLMs remains unexplored. In this paper, we address this gap and demonstrate that the scaling law is not always the optimal principle for benchmark construction in specific domains. Instead, we propose Comp-Comp, an iterative benchmarking framework based on a comprehensiveness-compactness principle. Here, comprehensiveness ensures semantic recall of the domain, while compactness enhances precision, guiding both corpus and QA set construction. To validate our framework, we conducted a case study in a well-renowned university, resulting in the creation of XUBench, a large-scale and comprehensive closed-domain benchmark. Although we use the academic domain as the case in this work, our Comp-Comp framework is designed to be extensible beyond academia, providing valuable insights for benchmark construction across various domains.
☆ PrLM: Learning Explicit Reasoning for Personalized RAG via Contrastive Reward Optimization
Personalized retrieval-augmented generation (RAG) aims to produce user-tailored responses by incorporating retrieved user profiles alongside the input query. Existing methods primarily focus on improving retrieval and rely on large language models (LLMs) to implicitly integrate the retrieved context with the query. However, such models are often sensitive to retrieval quality and may generate responses that are misaligned with user preferences. To address this limitation, we propose PrLM, a reinforcement learning framework that trains LLMs to explicitly reason over retrieved user profiles. Guided by a contrastively trained personalization reward model, PrLM effectively learns from user responses without requiring annotated reasoning paths. Experiments on three personalized text generation datasets show that PrLM outperforms existing methods and remains robust across varying numbers of retrieved profiles and different retrievers.
☆ Strategies of Code-switching in Human-Machine Dialogs
Most people are multilingual, and most multilinguals code-switch, yet the characteristics of code-switched language are not fully understood. We developed a chatbot capable of completing a Map Task with human participants using code-switched Spanish and English. In two experiments, we prompted the bot to code-switch according to different strategies, examining (1) the feasibility of such experiments for investigating bilingual language use, and (2) whether participants would be sensitive to variations in discourse and grammatical patterns. Participants generally enjoyed code-switching with our bot as long as it produced predictable code-switching behavior; when code-switching was random or ungrammatical (as when producing unattested incongruent mixed-language noun phrases, such as `la fork'), participants enjoyed the task less and were less successful at completing it. These results underscore the potential downsides of deploying insufficiently developed multilingual language technology, while also illustrating the promise of such technology for conducting research on bilingual language use.
☆ ObfusQAte: A Proposed Framework to Evaluate LLM Robustness on Obfuscated Factual Question Answering
The rapid proliferation of Large Language Models (LLMs) has significantly contributed to the development of equitable AI systems capable of factual question-answering (QA). However, no known study tests the LLMs' robustness when presented with obfuscated versions of questions. To systematically evaluate these limitations, we propose a novel technique, ObfusQAte and, leveraging the same, introduce ObfusQA, a comprehensive, first of its kind, framework with multi-tiered obfuscation levels designed to examine LLM capabilities across three distinct dimensions: (i) Named-Entity Indirection, (ii) Distractor Indirection, and (iii) Contextual Overload. By capturing these fine-grained distinctions in language, ObfusQA provides a comprehensive benchmark for evaluating LLM robustness and adaptability. Our study observes that LLMs exhibit a tendency to fail or generate hallucinated responses when confronted with these increasingly nuanced variations. To foster research in this direction, we make ObfusQAte publicly available.
☆ FlexCTC: GPU-powered CTC Beam Decoding with advanced Contextual Abilities
While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
comment: Accepted to Automatic Speech Recognition and Understanding Workshop (ASRU) 2025
☆ HealthBranches: Synthesizing Clinically-Grounded Question Answering Datasets via Decision Pathways
HealthBranches is a novel benchmark dataset for medical Question-Answering (Q&A), specifically designed to evaluate complex reasoning in Large Language Models (LLMs). This dataset is generated through a semi-automated pipeline that transforms explicit decision pathways from medical source into realistic patient cases with associated questions and answers. Covering 4,063 case studies across 17 healthcare topics, each data point is based on clinically validated reasoning chains. HealthBranches supports both open-ended and multiple-choice question formats and uniquely includes the full reasoning path for each Q&A. Its structured design enables robust evaluation of LLMs' multi-step inference capabilities, including their performance in structured Retrieval-Augmented Generation (RAG) contexts. HealthBranches establishes a foundation for the development of more trustworthy, interpretable, and clinically reliable LLMs in high-stakes domains while also serving as a valuable resource for educational purposes.
☆ CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
☆ EndoAgent: A Memory-Guided Reflective Agent for Intelligent Endoscopic Vision-to-Decision Reasoning
Developing general artificial intelligence (AI) systems to support endoscopic image diagnosis is an emerging research priority. Existing methods based on large-scale pretraining often lack unified coordination across tasks and struggle to handle the multi-step processes required in complex clinical workflows. While AI agents have shown promise in flexible instruction parsing and tool integration across domains, their potential in endoscopy remains underexplored. To address this gap, we propose EndoAgent, the first memory-guided agent for vision-to-decision endoscopic analysis that integrates iterative reasoning with adaptive tool selection and collaboration. Built on a dual-memory design, it enables sophisticated decision-making by ensuring logical coherence through short-term action tracking and progressively enhancing reasoning acuity through long-term experiential learning. To support diverse clinical tasks, EndoAgent integrates a suite of expert-designed tools within a unified reasoning loop. We further introduce EndoAgentBench, a benchmark of 5,709 visual question-answer pairs that assess visual understanding and language generation capabilities in realistic scenarios. Extensive experiments show that EndoAgent consistently outperforms both general and medical multimodal models, exhibiting its strong flexibility and reasoning capabilities.
☆ Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.
☆ "Pull or Not to Pull?'': Investigating Moral Biases in Leading Large Language Models Across Ethical Dilemmas
As large language models (LLMs) increasingly mediate ethically sensitive decisions, understanding their moral reasoning processes becomes imperative. This study presents a comprehensive empirical evaluation of 14 leading LLMs, both reasoning enabled and general purpose, across 27 diverse trolley problem scenarios, framed by ten moral philosophies, including utilitarianism, deontology, and altruism. Using a factorial prompting protocol, we elicited 3,780 binary decisions and natural language justifications, enabling analysis along axes of decisional assertiveness, explanation answer consistency, public moral alignment, and sensitivity to ethically irrelevant cues. Our findings reveal significant variability across ethical frames and model types: reasoning enhanced models demonstrate greater decisiveness and structured justifications, yet do not always align better with human consensus. Notably, "sweet zones" emerge in altruistic, fairness, and virtue ethics framings, where models achieve a balance of high intervention rates, low explanation conflict, and minimal divergence from aggregated human judgments. However, models diverge under frames emphasizing kinship, legality, or self interest, often producing ethically controversial outcomes. These patterns suggest that moral prompting is not only a behavioral modifier but also a diagnostic tool for uncovering latent alignment philosophies across providers. We advocate for moral reasoning to become a primary axis in LLM alignment, calling for standardized benchmarks that evaluate not just what LLMs decide, but how and why.
☆ MAQuA: Adaptive Question-Asking for Multidimensional Mental Health Screening using Item Response Theory
Recent advances in large language models (LLMs) offer new opportunities for scalable, interactive mental health assessment, but excessive querying by LLMs burdens users and is inefficient for real-world screening across transdiagnostic symptom profiles. We introduce MAQuA, an adaptive question-asking framework for simultaneous, multidimensional mental health screening. Combining multi-outcome modeling on language responses with item response theory (IRT) and factor analysis, MAQuA selects the questions with most informative responses across multiple dimensions at each turn to optimize diagnostic information, improving accuracy and potentially reducing response burden. Empirical results on a novel dataset reveal that MAQuA reduces the number of assessment questions required for score stabilization by 50-87% compared to random ordering (e.g., achieving stable depression scores with 71% fewer questions and eating disorder scores with 85% fewer questions). MAQuA demonstrates robust performance across both internalizing (depression, anxiety) and externalizing (substance use, eating disorder) domains, with early stopping strategies further reducing patient time and burden. These findings position MAQuA as a powerful and efficient tool for scalable, nuanced, and interactive mental health screening, advancing the integration of LLM-based agents into real-world clinical workflows.
☆ Incorporating Contextual Paralinguistic Understanding in Large Speech-Language Models
Current large speech language models (Speech-LLMs) often exhibit limitations in empathetic reasoning, primarily due to the absence of training datasets that integrate both contextual content and paralinguistic cues. In this work, we propose two approaches to incorporate contextual paralinguistic information into model training: (1) an explicit method that provides paralinguistic metadata (e.g., emotion annotations) directly to the LLM, and (2) an implicit method that automatically generates novel training question-answer (QA) pairs using both categorical and dimensional emotion annotations alongside speech transcriptions. Our implicit method boosts performance (LLM-judged) by 38.41% on a human-annotated QA benchmark, reaching 46.02% when combined with the explicit approach, showing effectiveness in contextual paralinguistic understanding. We also validate the LLM judge by demonstrating its correlation with classification metrics, providing support for its reliability.
comment: Accepted at (ASRU 2025) 2025 IEEE Automatic Speech Recognition and Understanding Workshop
☆ The 2D+ Dynamic Articulatory Model DYNARTmo: Tongue-Palate Contact Area Estimation
This paper describes an extension of the two-dimensional dynamic articulatory model DYNARTmo by integrating an internal three-dimensional representation of the palatal dome to estimate tongue-palate contact areas from midsagittal tongue contours. Two alternative dome geometries - a half-ellipse and a cosine based profile - are implemented to model lateral curvature in the coronal plane. Using these geometries, lateral contact points are analytically computed for each anterior-posterior position, enabling the generation of electropalatography-like visualizations within the 2D+ framework. The enhanced model supports three synchronized views (sagittal, glottal, and palatal) for static and dynamic (animated) articulation displays, suitable for speech science education and speech therapy. Future work includes adding a facial (lip) view and implementing articulatory-to-acoustic synthesis to quantitatively evaluate model realism.
comment: 11 pages, 9 figures, 14 references; supplementary material: python source code
☆ Prompt Tuning for Few-Shot Continual Learning Named Entity Recognition
Knowledge distillation has been successfully applied to Continual Learning Named Entity Recognition (CLNER) tasks, by using a teacher model trained on old-class data to distill old-class entities present in new-class data as a form of regularization, thereby avoiding catastrophic forgetting. However, in Few-Shot CLNER (FS-CLNER) tasks, the scarcity of new-class entities makes it difficult for the trained model to generalize during inference. More critically, the lack of old-class entity information hinders the distillation of old knowledge, causing the model to fall into what we refer to as the Few-Shot Distillation Dilemma. In this work, we address the above challenges through a prompt tuning paradigm and memory demonstration template strategy. Specifically, we designed an expandable Anchor words-oriented Prompt Tuning (APT) paradigm to bridge the gap between pre-training and fine-tuning, thereby enhancing performance in few-shot scenarios. Additionally, we incorporated Memory Demonstration Templates (MDT) into each training instance to provide replay samples from previous tasks, which not only avoids the Few-Shot Distillation Dilemma but also promotes in-context learning. Experiments show that our approach achieves competitive performances on FS-CLNER.
☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 10 pages, 4 figures, submitted to the Journal of the Acoustical Society of America (JASA)
☆ Enhancing Rumor Detection Methods with Propagation Structure Infused Language Model COLING2025
Pretrained Language Models (PLMs) have excelled in various Natural Language Processing tasks, benefiting from large-scale pretraining and self-attention mechanism's ability to capture long-range dependencies. However, their performance on social media application tasks like rumor detection remains suboptimal. We attribute this to mismatches between pretraining corpora and social texts, inadequate handling of unique social symbols, and pretraining tasks ill-suited for modeling user engagements implicit in propagation structures. To address these issues, we propose a continue pretraining strategy called Post Engagement Prediction (PEP) to infuse information from propagation structures into PLMs. PEP makes models to predict root, branch, and parent relations between posts, capturing interactions of stance and sentiment crucial for rumor detection. We also curate and release large-scale Twitter corpus: TwitterCorpus (269GB text), and two unlabeled claim conversation datasets with propagation structures (UTwitter and UWeibo). Utilizing these resources and PEP strategy, we train a Twitter-tailored PLM called SoLM. Extensive experiments demonstrate PEP significantly boosts rumor detection performance across universal and social media PLMs, even in few-shot scenarios. On benchmark datasets, PEP enhances baseline models by 1.0-3.7\% accuracy, even enabling it to outperform current state-of-the-art methods on multiple datasets. SoLM alone, without high-level modules, also achieves competitive results, highlighting the strategy's effectiveness in learning discriminative post interaction features.
comment: This paper is accepted by COLING2025
☆ Towards Real-World Rumor Detection: Anomaly Detection Framework with Graph Supervised Contrastive Learning COLING2025
Current rumor detection methods based on propagation structure learning predominately treat rumor detection as a class-balanced classification task on limited labeled data. However, real-world social media data exhibits an imbalanced distribution with a minority of rumors among massive regular posts. To address the data scarcity and imbalance issues, we construct two large-scale conversation datasets from Weibo and Twitter and analyze the domain distributions. We find obvious differences between rumor and non-rumor distributions, with non-rumors mostly in entertainment domains while rumors concentrate in news, indicating the conformity of rumor detection to an anomaly detection paradigm. Correspondingly, we propose the Anomaly Detection framework with Graph Supervised Contrastive Learning (AD-GSCL). It heuristically treats unlabeled data as non-rumors and adapts graph contrastive learning for rumor detection. Extensive experiments demonstrate AD-GSCL's superiority under class-balanced, imbalanced, and few-shot conditions. Our findings provide valuable insights for real-world rumor detection featuring imbalanced data distributions.
comment: This paper is accepted by COLING2025
☆ Propagation Tree Is Not Deep: Adaptive Graph Contrastive Learning Approach for Rumor Detection AAAI2024
Rumor detection on social media has become increasingly important. Most existing graph-based models presume rumor propagation trees (RPTs) have deep structures and learn sequential stance features along branches. However, through statistical analysis on real-world datasets, we find RPTs exhibit wide structures, with most nodes being shallow 1-level replies. To focus learning on intensive substructures, we propose Rumor Adaptive Graph Contrastive Learning (RAGCL) method with adaptive view augmentation guided by node centralities. We summarize three principles for RPT augmentation: 1) exempt root nodes, 2) retain deep reply nodes, 3) preserve lower-level nodes in deep sections. We employ node dropping, attribute masking and edge dropping with probabilities from centrality-based importance scores to generate views. A graph contrastive objective then learns robust rumor representations. Extensive experiments on four benchmark datasets demonstrate RAGCL outperforms state-of-the-art methods. Our work reveals the wide-structure nature of RPTs and contributes an effective graph contrastive learning approach tailored for rumor detection through principled adaptive augmentation. The proposed principles and augmentation techniques can potentially benefit other applications involving tree-structured graphs.
comment: This paper is accepted by AAAI2024
☆ Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.
☆ DySK-Attn: A Framework for Efficient, Real-Time Knowledge Updating in Large Language Models via Dynamic Sparse Knowledge Attention
Large Language Models (LLMs) suffer from a critical limitation: their knowledge is static and quickly becomes outdated. Retraining these massive models is computationally prohibitive, while existing knowledge editing techniques can be slow and may introduce unforeseen side effects. To address this, we propose DySK-Attn, a novel framework that enables LLMs to efficiently integrate real-time knowledge from a dynamic external source. Our approach synergizes an LLM with a dynamic Knowledge Graph (KG) that can be updated instantaneously. The core of our framework is a sparse knowledge attention mechanism, which allows the LLM to perform a coarse-to-fine grained search, efficiently identifying and focusing on a small, highly relevant subset of facts from the vast KG. This mechanism avoids the high computational cost of dense attention over the entire knowledge base and mitigates noise from irrelevant information. We demonstrate through extensive experiments on time-sensitive question-answering tasks that DySK-Attn significantly outperforms strong baselines, including standard Retrieval-Augmented Generation (RAG) and model editing techniques, in both factual accuracy for updated knowledge and computational efficiency. Our framework offers a scalable and effective solution for building LLMs that can stay current with the ever-changing world.
comment: Preprint; 7 figures, 3 tables, 1 algorithm; v1. Code and data will be released
☆ Schema Lineage Extraction at Scale: Multilingual Pipelines, Composite Evaluation, and Language-Model Benchmarks
Enterprise data pipelines, characterized by complex transformations across multiple programming languages, often cause a semantic disconnect between original metadata and downstream data. This "semantic drift" compromises data reproducibility and governance, and impairs the utility of services like retrieval-augmented generation (RAG) and text-to-SQL systems. To address this, a novel framework is proposed for the automated extraction of fine-grained schema lineage from multilingual enterprise pipeline scripts. This method identifies four key components: source schemas, source tables, transformation logic, and aggregation operations, creating a standardized representation of data transformations. For the rigorous evaluation of lineage quality, this paper introduces the Schema Lineage Composite Evaluation (SLiCE), a metric that assesses both structural correctness and semantic fidelity. A new benchmark is also presented, comprising 1,700 manually annotated lineages from real-world industrial scripts. Experiments were conducted with 12 language models, from 1.3B to 32B small language models (SLMs) to large language models (LLMs) like GPT-4o and GPT-4.1. The results demonstrate that the performance of schema lineage extraction scales with model size and the sophistication of prompting techniques. Specially, a 32B open-source model, using a single reasoning trace, can achieve performance comparable to the GPT series under standard prompting. This finding suggests a scalable and economical approach for deploying schema-aware agents in practical applications.
☆ Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback CIKM '25
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.
comment: Accepted by the 34th ACM International Conference on Information and Knowledge Management (CIKM '25), Full Research Papers track
♻ ☆ Instruction Tuning for Large Language Models: A Survey
This paper surveys research works in the quickly advancing field of instruction tuning (IT), which can also be referred to as supervised fine-tuning (SFT)\footnote{In this paper, unless specified otherwise, supervised fine-tuning (SFT) and instruction tuning (IT) are used interchangeably.}, a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of SFT, the construction of SFT datasets, the training of SFT models, and applications to different modalities, domains and application, along with analysis on aspects that influence the outcome of SFT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research. Project Page: github.com/xiaoya-li/Instruction-Tuning-Survey
comment: V6; Last update: AUG 11, 2025
♻ ☆ Extracting Probabilistic Knowledge from Large Language Models for Bayesian Network Parameterization
In this work, we evaluate the potential of Large Language Models (LLMs) in building Bayesian Networks (BNs) by approximating domain expert priors. LLMs have demonstrated potential as factual knowledge bases; however, their capability to generate probabilistic knowledge about real-world events remains understudied. We explore utilizing the probabilistic knowledge inherent in LLMs to derive probability estimates for statements regarding events and their relationships within a BN. Using LLMs in this context allows for the parameterization of BNs, enabling probabilistic modeling within specific domains. Our experiments on eighty publicly available Bayesian Networks, from healthcare to finance, demonstrate that querying LLMs about the conditional probabilities of events provides meaningful results when compared to baselines, including random and uniform distributions, as well as approaches based on next-token generation probabilities. We explore how these LLM-derived distributions can serve as expert priors to refine distributions extracted from data, especially when data is scarce. Overall, this work introduces a promising strategy for automatically constructing Bayesian Networks by combining probabilistic knowledge extracted from LLMs with real-world data. Additionally, we establish the first comprehensive baseline for assessing LLM performance in extracting probabilistic knowledge.
♻ ☆ MathScape: Benchmarking Multimodal Large Language Models in Real-World Mathematical Contexts
With the rapid progress of Multimodal LLMs, evaluating their mathematical reasoning capabilities has become an increasingly important research direction. In particular, visual-textual mathematical reasoning serves as a key indicator of an MLLM's ability to comprehend and solve complex, multi-step quantitative problems. While existing benchmarks such as MathVista and MathVerse have advanced the evaluation of multimodal math proficiency, they primarily rely on digitally rendered content and fall short in capturing the complexity of real-world scenarios. To bridge this gap, we introduce MathScape, a novel benchmark focused on assessing MLLMs' reasoning ability in realistic mathematical contexts. MathScape comprises 1,369 high-quality math problems paired with human-captured real-world images, closely reflecting the challenges encountered in practical educational settings. We conduct a thorough multi-dimensional evaluation across nine leading closed-source MLLMs, three open-source MLLMs with over 20 billion parameters, and seven smaller-scale MLLMs. Our results show that even SOTA models struggle with real-world math tasks, lagging behind human performance -- highlighting critical limitations in current model capabilities. Moreover, we find that strong performance on synthetic or digitally rendered images does not guarantee similar effectiveness on real-world tasks. This underscores the necessity of MathScape in the next stage of multimodal mathematical reasoning.
♻ ☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography
♻ ☆ How Chinese are Chinese Language Models? The Puzzling Lack of Language Policy in China's LLMs
Contemporary language models are increasingly multilingual, but Chinese LLM developers must navigate complex political and business considerations of language diversity. Language policy in China aims at influencing the public discourse and governing a multi-ethnic society, and has gradually transitioned from a pluralist to a more assimilationist approach since 1949. We explore the impact of these influences on current language technology. We evaluate six open-source multilingual LLMs pre-trained by Chinese companies on 18 languages, spanning a wide range of Chinese, Asian, and Anglo-European languages. Our experiments show Chinese LLMs performance on diverse languages is indistinguishable from international LLMs. Similarly, the models' technical reports also show lack of consideration for pretraining data language coverage except for English and Mandarin Chinese. Examining Chinese AI policy, model experiments, and technical reports, we find no sign of any consistent policy, either for or against, language diversity in China's LLM development. This leaves a puzzling fact that while China regulates both the languages people use daily as well as language model development, they do not seem to have any policy on the languages in language models.
comment: We have reworked the paper substantially. Please refer to the new, updated article: arXiv:2504.00289
♻ ☆ Overcoming Vocabulary Constraints with Pixel-level Fallback
Subword tokenization requires balancing computational efficiency and vocabulary coverage, which often leads to suboptimal performance on languages and scripts not prioritized during training. We propose to augment pretrained language models with a vocabulary-free encoder that generates input embeddings from text rendered as pixels. Through experiments on English-centric language models, we demonstrate that our approach substantially improves machine translation performance and facilitates effective cross-lingual transfer, outperforming tokenizer-based methods. Furthermore, we find that pixel-based representations outperform byte-level approaches and standard vocabulary expansion. Our approach enhances the multilingual capabilities of monolingual language models without extensive retraining and reduces decoding latency via input compression.
comment: COLM 2025
♻ ☆ Highly Fast Text Segmentation With Pairwise Markov Chains
Natural Language Processing (NLP) models' current trend consists of using increasingly more extra-data to build the best models as possible. It implies more expensive computational costs and training time, difficulties for deployment, and worries about these models' carbon footprint reveal a critical problem in the future. Against this trend, our goal is to develop NLP models requiring no extra-data and minimizing training time. To do so, in this paper, we explore Markov chain models, Hidden Markov Chain (HMC) and Pairwise Markov Chain (PMC), for NLP segmentation tasks. We apply these models for three classic applications: POS Tagging, Named-Entity-Recognition, and Chunking. We develop an original method to adapt these models for text segmentation's specific challenges to obtain relevant performances with very short training and execution times. PMC achieves equivalent results to those obtained by Conditional Random Fields (CRF), one of the most applied models for these tasks when no extra-data are used. Moreover, PMC has training times 30 times shorter than the CRF ones, which validates this model given our objectives.
comment: 9 pages, 5 figures, 4 tables, MNLP 2020
♻ ☆ Verbal Werewolf: Engage Users with Verbalized Agentic Werewolf Game Framework
The growing popularity of social deduction games has created an increasing need for intelligent frameworks where humans can collaborate with AI agents, particularly in post-pandemic contexts with heightened psychological and social pressures. Social deduction games like Werewolf, traditionally played through verbal communication, present an ideal application for Large Language Models (LLMs) given their advanced reasoning and conversational capabilities. Prior studies have shown that LLMs can outperform humans in Werewolf games, but their reliance on external modules introduces latency that left their contribution in academic domain only, and omit such game should be user-facing. We propose \textbf{Verbal Werewolf}, a novel LLM-based Werewolf game system that optimizes two parallel pipelines: gameplay powered by state-of-the-art LLMs and a fine-tuned Text-to-Speech (TTS) module that brings text output to life. Our system operates in near real-time without external decision-making modules, leveraging the enhanced reasoning capabilities of modern LLMs like DeepSeek V3 to create a more engaging and anthropomorphic gaming experience that significantly improves user engagement compared to existing text-only frameworks.
♻ ☆ Instructor-Worker Large Language Model System for Policy Recommendation: a Case Study on Air Quality Analysis of the January 2025 Los Angeles Wildfires
The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent large language model framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users' instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system's capability for data-based policy recommendation by assessing our Instructor-Worker LLM system's health recommendations based on air quality during the Los Angeles wildfires.
♻ ☆ Reasoning Capabilities of Large Language Models on Dynamic Tasks
Large language models excel on static benchmarks, but their ability as self-learning agents in dynamic environments remains unclear. We evaluate three prompting strategies: self-reflection, heuristic mutation, and planning across dynamic tasks with open-source models. We find that larger models generally outperform smaller ones, but that strategic prompting can close this performance gap. Second, an overly long prompt can negatively impact smaller models on basic reactive tasks, while larger models show more robust behaviour. Third, advanced prompting techniques primarily benefit smaller models on complex games, but offer less improvement for already high-performing large language models. Yet, we find that advanced reasoning methods yield highly variable outcomes: while capable of significantly improving performance when reasoning and decision-making align, they also introduce instability and can lead to big performance drops. Compared to human performance, our findings reveal little evidence of true emergent reasoning. Instead, large language model performance exhibits persistent limitations in areas like planning and spatial coordination, suggesting that large language models still suffer fundamental shortcomings that may not be fully overcome through self-reflective prompting alone. Reasoning is a multi-faceted task, and while methods like Chain-of-thought improve multi-step reasoning on math word problems, our findings using dynamic benchmarks highlight important shortcomings in general reasoning capabilities, indicating a need to move beyond static benchmarks to capture the complexity of reasoning.
♻ ☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop OptScale, a practical algorithm that dynamically determines the optimal number of sampled responses. OptScale employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that OptScale significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning. The source code is publicly available at https://github.com/Albertwyk/OptScale.
♻ ☆ PersianMedQA: Evaluating Large Language Models on a Persian-English Bilingual Medical Question Answering Benchmark
Large Language Models (LLMs) have achieved remarkable performance on a wide range of Natural Language Processing (NLP) benchmarks, often surpassing human-level accuracy. However, their reliability in high-stakes domains such as medicine, particularly in low-resource languages, remains underexplored. In this work, we introduce PersianMedQA, a large-scale dataset of 20,785 expert-validated multiple-choice Persian medical questions from 14 years of Iranian national medical exams, spanning 23 medical specialties and designed to evaluate LLMs in both Persian and English. We benchmark 40 state-of-the-art models, including general-purpose, Persian fine-tuned, and medical LLMs, in zero-shot and chain-of-thought (CoT) settings. Our results show that closed-source general models (e.g., GPT-4.1) consistently outperform all other categories, achieving 83.09% accuracy in Persian and 80.7% in English, while Persian fine-tuned models such as Dorna underperform significantly (e.g., 34.9% in Persian), often struggling with both instruction-following and domain reasoning. We also analyze the impact of translation, showing that while English performance is generally higher, 3-10% of questions can only be answered correctly in Persian due to cultural and clinical contextual cues that are lost in translation. Finally, we demonstrate that model size alone is insufficient for robust performance without strong domain or language adaptation. PersianMedQA provides a foundation for evaluating bilingual and culturally grounded medical reasoning in LLMs. The PersianMedQA dataset is available: https://huggingface.co/datasets/MohammadJRanjbar/PersianMedQA .
♻ ☆ MDC-R: The Minecraft Dialogue Corpus with Reference
We introduce the Minecraft Dialogue Corpus with Reference (MDC-R). MDC-R is a new language resource that supplements the original Minecraft Dialogue Corpus (MDC) with expert annotations of anaphoric and deictic reference. MDC's task-orientated, multi-turn, situated dialogue in a dynamic environment has motivated multiple annotation efforts, owing to the interesting linguistic phenomena that this setting gives rise to. We believe it can serve as a valuable resource when annotated with reference, too. Here, we discuss our method of annotation and the resulting corpus, and provide both a quantitative and a qualitative analysis of the data. Furthermore, we carry out a short experiment demonstrating the usefulness of our corpus for referring expression comprehension.
♻ ☆ Beyond Content: How Grammatical Gender Shapes Visual Representation in Text-to-Image Models
Research on bias in Text-to-Image (T2I) models has primarily focused on demographic representation and stereotypical attributes, overlooking a fundamental question: how does grammatical gender influence visual representation across languages? We introduce a cross-linguistic benchmark examining words where grammatical gender contradicts stereotypical gender associations (e.g., ``une sentinelle'' - grammatically feminine in French but referring to the stereotypically masculine concept ``guard''). Our dataset spans five gendered languages (French, Spanish, German, Italian, Russian) and two gender-neutral control languages (English, Chinese), comprising 800 unique prompts that generated 28,800 images across three state-of-the-art T2I models. Our analysis reveals that grammatical gender dramatically influences image generation: masculine grammatical markers increase male representation to 73\% on average (compared to 22\% with gender-neutral English), while feminine grammatical markers increase female representation to 38\% (compared to 28\% in English). These effects vary systematically by language resource availability and model architecture, with high-resource languages showing stronger effects. Our findings establish that language structure itself, not just content, shapes AI-generated visual outputs, introducing a new dimension for understanding bias and fairness in multilingual, multimodal systems.
♻ ☆ FlatQuant: Flatness Matters for LLM Quantization ICML 2025
Recently, quantization has been widely used for the compression and acceleration of large language models (LLMs). Due to the outliers in LLMs, it is crucial to flatten weights and activations to minimize quantization error with equally spaced quantization points. Prior research explores various pre-quantization transformations to suppress outliers, such as per-channel scaling and Hadamard transformation. However, we observe that these transformed weights and activations can still exhibit steep and dispersed distributions. In this paper, we propose FlatQuant (Fast and Learnable Affine Transformation), a new post-training quantization approach that enhances the flatness of weights and activations. Our approach identifies optimal affine transformations for each linear layer, calibrated in hours via a lightweight objective. To reduce runtime overhead of affine transformation, we apply Kronecker product with two lightweight matrices, and fuse all operations in FlatQuant into a single kernel. Extensive experiments demonstrate that FlatQuant establishes a new state-of-the-art benchmark for quantization. For example, it achieves less than 1\% accuracy drop for W4A4 quantization on the LLaMA-3-70B model, surpassing SpinQuant by 7.5\%. Additionally, it provides up to 2.3x prefill speedup and 1.7x decoding speedup compared to the FP16 model. Code is available at: https://github.com/ruikangliu/FlatQuant.
comment: 27 pages, accepted to ICML 2025
♻ ☆ ScaffoldGPT: A Scaffold-based GPT Model for Drug Optimization
Drug optimization has become increasingly crucial in light of fast-mutating virus strains and drug-resistant cancer cells. Nevertheless, it remains challenging as it necessitates retaining the beneficial properties of the original drug while simultaneously enhancing desired attributes beyond its scope. In this work, we aim to tackle this challenge by introducing ScaffoldGPT, a novel Generative Pretrained Transformer (GPT) designed for drug optimization based on molecular scaffolds. Our work comprises three key components: (1) A three-stage drug optimization approach that integrates pretraining, finetuning, and decoding optimization. (2) A novel two-phase incremental pre-training strategy for scaffold-based drug optimization. (3) A token-level decoding optimization strategy, Top-N, that enabling controlled, reward-guided generation using the pretrained or finetuned GPT. We demonstrate via a comprehensive evaluation on COVID and cancer benchmarks that ScaffoldGPT outperforms the competing baselines in drug optimization benchmarks, while excelling in preserving original functional scaffold and enhancing desired properties.
♻ ☆ URO-Bench: Towards Comprehensive Evaluation for End-to-End Spoken Dialogue Models
Recent advances in large language models (LLMs) have driven significant progress in end-to-end spoken dialogue models (SDMs). In contrast to text-based LLMs, the evaluation framework for SDMs should encompass both cognitive dimensions (e.g., logical reasoning, knowledge) and speech-related aspects (e.g., paralinguistic cues, audio quality). However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose URO-Bench, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, each comprising 20 test sets, evaluating the spoken dialogue model's abilities in Understanding, Reasoning, and Oral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area.
♻ ☆ Multimodal Fact Checking with Unified Visual, Textual, and Contextual Representations
The growing rate of multimodal misinformation, where claims are supported by both text and images, poses significant challenges to fact-checking systems that rely primarily on textual evidence. In this work, we have proposed a unified framework for fine-grained multimodal fact verification called "MultiCheck", designed to reason over structured textual and visual signals. Our architecture combines dedicated encoders for text and images with a fusion module that captures cross-modal relationships using element-wise interactions. A classification head then predicts the veracity of a claim, supported by a contrastive learning objective that encourages semantic alignment between claim-evidence pairs in a shared latent space. We evaluate our approach on the Factify 2 dataset, achieving a weighted F1 score of 0.84, substantially outperforming the baseline. These results highlight the effectiveness of explicit multimodal reasoning and demonstrate the potential of our approach for scalable and interpretable fact-checking in complex, real-world scenarios.
♻ ☆ Meta-Unlearning on Diffusion Models: Preventing Relearning Unlearned Concepts ICCV 2025
With the rapid progress of diffusion-based content generation, significant efforts are being made to unlearn harmful or copyrighted concepts from pretrained diffusion models (DMs) to prevent potential model misuse. However, it is observed that even when DMs are properly unlearned before release, malicious finetuning can compromise this process, causing DMs to relearn the unlearned concepts. This occurs partly because certain benign concepts (e.g., "skin") retained in DMs are related to the unlearned ones (e.g., "nudity"), facilitating their relearning via finetuning. To address this, we propose meta-unlearning on DMs. Intuitively, a meta-unlearned DM should behave like an unlearned DM when used as is; moreover, if the meta-unlearned DM undergoes malicious finetuning on unlearned concepts, the related benign concepts retained within it will be triggered to self-destruct, hindering the relearning of unlearned concepts. Our meta-unlearning framework is compatible with most existing unlearning methods, requiring only the addition of an easy-to-implement meta objective. We validate our approach through empirical experiments on meta-unlearning concepts from Stable Diffusion models (SD-v1-4 and SDXL), supported by extensive ablation studies. Our code is available at https://github.com/sail-sg/Meta-Unlearning.
comment: ICCV 2025
♻ ☆ Improving Your Model Ranking on Chatbot Arena by Vote Rigging ICML 2025
Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be rigged to improve (or decrease) the ranking of a target model $m_{t}$. We first introduce a straightforward target-only rigging strategy that focuses on new battles involving $m_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about $1\%$ of new battles will involve $m_{t}$. To overcome this, we propose omnipresent rigging strategies, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m_{t}$, even if $m_{t}$ is not directly involved in the battle. We conduct experiments on around $1.7$ million historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategies can improve model rankings by rigging only hundreds of new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. Our code is available at https://github.com/sail-sg/Rigging-ChatbotArena.
comment: ICML 2025
♻ ☆ Decoding the Multimodal Mind: Generalizable Brain-to-Text Translation via Multimodal Alignment and Adaptive Routing
Decoding language from the human brain remains a grand challenge for Brain-Computer Interfaces (BCIs). Current approaches typically rely on unimodal brain representations, neglecting the brain's inherently multimodal processing. Inspired by the brain's associative mechanisms, where viewing an image can evoke related sounds and linguistic representations, we propose a unified framework that leverages Multimodal Large Language Models (MLLMs) to align brain signals with a shared semantic space encompassing text, images, and audio. A router module dynamically selects and fuses modality-specific brain features according to the characteristics of each stimulus. Experiments on various fMRI datasets with textual, visual, and auditory stimuli demonstrate state-of-the-art performance, achieving an 8.48% improvement on the most commonly used benchmark. We further extend our framework to EEG and MEG data, demonstrating flexibility and robustness across varying temporal and spatial resolutions. To our knowledge, this is the first unified BCI architecture capable of robustly decoding multimodal brain activity across diverse brain signals and stimulus types, offering a flexible solution for real-world applications.
♻ ☆ RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
♻ ☆ A novel language model for predicting serious adverse event results in clinical trials from their prospective registrations
Objectives: With accurate estimates of expected safety results, clinical trials could be better designed and monitored. We evaluated methods for predicting serious adverse event (SAE) results in clinical trials using information only from their registrations prior to the trial. Material and Methods: We analyzed 22,107 two-arm parallel interventional clinical trials from ClinicalTrials.gov with structured summary results. Two prediction models were developed: a classifier predicting whether a greater proportion of participants in an experimental arm would have SAEs (area under the receiver operating characteristic curve; AUC) compared to the control arm, and a regression model to predict the proportion of participants with SAEs in the control arms (root mean squared error; RMSE). A transfer learning approach using pretrained language models (e.g., ClinicalT5, BioBERT) was used for feature extraction, combined with a downstream model for prediction. To maintain semantic representation in long trial texts exceeding localized language model input limits, a sliding window method was developed for embedding extraction. Results: The best model (ClinicalT5+Transformer+MLP) had 77.6% AUC when predicting which trial arm had a higher proportion of SAEs. When predicting SAE proportion in the control arm, the same model achieved RMSE of 18.6%. The sliding window approach consistently outperformed direct comparisons. Across 12 classifiers, the average absolute AUC increase was 2.00%, and absolute RMSE reduction was 1.58% across 12 regressors. Discussion: Summary results data from ClinicalTrials.gov remains underutilized. Predicted results of publicly reported trials provides an opportunity to identify discrepancies between expected and reported safety results.
comment: 12 pages, 4 figures. Updated to include Table 2, Supplementary Table 1, and an additional baseline random forest model
♻ ☆ WebDancer: Towards Autonomous Information Seeking Agency
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
♻ ☆ Document Valuation in LLM Summaries: A Cluster Shapley Approach
Large Language Models (LLMs) are increasingly used in systems that retrieve and summarize content from multiple sources, such as search engines and AI assistants. While these models enhance user experience by generating coherent summaries, they obscure the contributions of original content creators, raising concerns about credit attribution and compensation. We address the challenge of valuing individual documents used in LLM-generated summaries. We propose using Shapley values, a game-theoretic method that allocates credit based on each document's marginal contribution. Although theoretically appealing, Shapley values are expensive to compute at scale. We therefore propose Cluster Shapley, an efficient approximation algorithm that leverages semantic similarity between documents. By clustering documents using LLM-based embeddings and computing Shapley values at the cluster level, our method significantly reduces computation while maintaining attribution quality. We demonstrate our approach to a summarization task using Amazon product reviews. Cluster Shapley significantly reduces computational complexity while maintaining high accuracy, outperforming baseline methods such as Monte Carlo sampling and Kernel SHAP with a better efficient frontier. Our approach is agnostic to the exact LLM used, the summarization process used, and the evaluation procedure, which makes it broadly applicable to a variety of summarization settings.
♻ ☆ WebWalker: Benchmarking LLMs in Web Traversal
Retrieval-augmented generation (RAG) demonstrates remarkable performance across tasks in open-domain question-answering. However, traditional search engines may retrieve shallow content, limiting the ability of LLMs to handle complex, multi-layered information. To address it, we introduce WebWalkerQA, a benchmark designed to assess the ability of LLMs to perform web traversal. It evaluates the capacity of LLMs to traverse a website's subpages to extract high-quality data systematically. We propose WebWalker, which is a multi-agent framework that mimics human-like web navigation through an explore-critic paradigm. Extensive experimental results show that WebWalkerQA is challenging and demonstrates the effectiveness of RAG combined with WebWalker, through the horizontal and vertical integration in real-world scenarios.
Information Retrieval 9
☆ Are Multimodal Embeddings Truly Beneficial for Recommendation? A Deep Dive into Whole vs. Individual Modalities
Multimodal recommendation (MMRec) has emerged as a mainstream paradigm, typically leveraging text and visual embeddings extracted from pre-trained models such as Sentence-BERT, Vision Transformers, and ResNet. This approach is founded on the intuitive assumption that incorporating multimodal embeddings can enhance recommendation performance. However, despite its popularity, this assumption lacks comprehensive empirical verification. This presents a critical research gap. To address it, we pose the central research question of this paper: Are multimodal embeddings truly beneficial for recommendation? To answer this question, we conduct a large-scale empirical study examining the role of text and visual embeddings in modern MMRec models, both as a whole and individually. Specifically, we pose two key research questions: (1) Do multimodal embeddings as a whole improve recommendation performance? (2) Is each individual modality - text and image - useful when used alone? To isolate the effect of individual modalities - text or visual - we employ a modality knockout strategy by setting the corresponding embeddings to either constant values or random noise. To ensure the scale and comprehensiveness of our study, we evaluate 14 widely used state-of-the-art MMRec models. Our findings reveal that: (1) multimodal embeddings generally enhance recommendation performance - particularly when integrated through more sophisticated graph-based fusion models. Surprisingly, commonly adopted baseline models with simple fusion schemes, such as VBPR and BM3, show only limited gains. (2) The text modality alone achieves performance comparable to the full multimodal setting in most cases, whereas the image modality alone does not. These results offer foundational insights and practical guidance for the MMRec community. We will release our code and datasets to facilitate future research.
☆ PrLM: Learning Explicit Reasoning for Personalized RAG via Contrastive Reward Optimization
Personalized retrieval-augmented generation (RAG) aims to produce user-tailored responses by incorporating retrieved user profiles alongside the input query. Existing methods primarily focus on improving retrieval and rely on large language models (LLMs) to implicitly integrate the retrieved context with the query. However, such models are often sensitive to retrieval quality and may generate responses that are misaligned with user preferences. To address this limitation, we propose PrLM, a reinforcement learning framework that trains LLMs to explicitly reason over retrieved user profiles. Guided by a contrastively trained personalization reward model, PrLM effectively learns from user responses without requiring annotated reasoning paths. Experiments on three personalized text generation datasets show that PrLM outperforms existing methods and remains robust across varying numbers of retrieved profiles and different retrievers.
☆ HealthBranches: Synthesizing Clinically-Grounded Question Answering Datasets via Decision Pathways
HealthBranches is a novel benchmark dataset for medical Question-Answering (Q&A), specifically designed to evaluate complex reasoning in Large Language Models (LLMs). This dataset is generated through a semi-automated pipeline that transforms explicit decision pathways from medical source into realistic patient cases with associated questions and answers. Covering 4,063 case studies across 17 healthcare topics, each data point is based on clinically validated reasoning chains. HealthBranches supports both open-ended and multiple-choice question formats and uniquely includes the full reasoning path for each Q&A. Its structured design enables robust evaluation of LLMs' multi-step inference capabilities, including their performance in structured Retrieval-Augmented Generation (RAG) contexts. HealthBranches establishes a foundation for the development of more trustworthy, interpretable, and clinically reliable LLMs in high-stakes domains while also serving as a valuable resource for educational purposes.
☆ Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.
☆ SocRipple: A Two-Stage Framework for Cold-Start Video Recommendations
Most industry scale recommender systems face critical cold start challenges new items lack interaction history, making it difficult to distribute them in a personalized manner. Standard collaborative filtering models underperform due to sparse engagement signals, while content only approaches lack user specific relevance. We propose SocRipple, a novel two stage retrieval framework tailored for coldstart item distribution in social graph based platforms. Stage 1 leverages the creators social connections for targeted initial exposure. Stage 2 builds on early engagement signals and stable user embeddings learned from historical interactions to "ripple" outwards via K Nearest Neighbor (KNN) search. Large scale experiments on a major video platform show that SocRipple boosts cold start item distribution by +36% while maintaining user engagement rate on cold start items, effectively balancing new item exposure with personalized recommendations.
comment: 4 pages, 2 figures, 2 tables, recsys 2025
☆ Selection and Exploitation of High-Quality Knowledge from Large Language Models for Recommendation
In recent years, there has been growing interest in leveraging the impressive generalization capabilities and reasoning ability of large language models (LLMs) to improve the performance of recommenders. With this operation, recommenders can access and learn the additional world knowledge and reasoning information via LLMs. However, in general, for different users and items, the world knowledge derived from LLMs suffers from issues of hallucination, content redundant, and information homogenization. Directly feeding the generated response embeddings into the recommendation model can lead to unavoidable performance deterioration. To address these challenges, we propose a Knowledge Selection \& Exploitation Recommendation (KSER) framework, which effectively select and extracts the high-quality knowledge from LLMs. The framework consists of two key components: a knowledge filtering module and a embedding spaces alignment module. In the knowledge filtering module, a Embedding Selection Filter Network (ESFNet) is designed to assign adaptive weights to different knowledge chunks in different knowledge fields. In the space alignment module, an attention-based architecture is proposed to align the semantic embeddings from LLMs with the feature space used to train the recommendation models. In addition, two training strategies--\textbf{all-parameters training} and \textbf{extractor-only training}--are proposed to flexibly adapt to different downstream tasks and application scenarios, where the extractor-only training strategy offers a novel perspective on knowledge-augmented recommendation. Experimental results validate the necessity and effectiveness of both the knowledge filtering and alignment modules, and further demonstrate the efficiency and effectiveness of the extractor-only training strategy.
☆ Uncertainty-Aware Semantic Decoding for LLM-Based Sequential Recommendation APWeb 2025
Large language models have been widely applied to sequential recommendation tasks, yet during inference, they continue to rely on decoding strategies developed for natural language processing. This creates a mismatch between text-generation objectives and recommendation next item selection objectives. This paper addresses this limitation by proposing an Uncertainty-aware Semantic Decoding (USD) framework that combines logit-based clustering with adaptive scoring to improve next-item predictions. Our approach clusters items with similar logit vectors into semantic equivalence groups, then redistributes probability mass within these clusters and computes entropy across them to control item scoring and sampling temperature during recommendation inference. Experiments on Amazon Product datasets (six domains) gains of 18.5\% in HR@3, 11.9\% in NDCG@3, and 10.8\% in MRR@3 compared to state-of-the-art baselines. Hyperparameter analysis confirms the optimal parameters among various settings, and experiments on H\&M, and Netflix datasets indicate that the framework can adapt to differing recommendation domains. The experimental results confirm that integrating semantic clustering and uncertainty assessment yields more reliable and accurate recommendations.
comment: Accepted by APWeb 2025
♻ ☆ How Fair is Your Diffusion Recommender Model? RecSys 2025
Diffusion-based learning has settled as a rising paradigm in generative recommendation, outperforming traditional approaches built upon variational autoencoders and generative adversarial networks. Despite their effectiveness, concerns have been raised that diffusion models - widely adopted in other machine-learning domains - could potentially lead to unfair outcomes, since they are trained to recover data distributions that often encode inherent biases. Motivated by the related literature, and acknowledging the extensive discussion around bias and fairness aspects in recommendation, we propose, to the best of our knowledge, the first empirical study of fairness for DiffRec, chronologically the pioneer technique in diffusion-based recommendation. Our empirical study involves DiffRec and its variant L-DiffRec, tested against nine recommender systems on two benchmarking datasets to assess recommendation utility and fairness from both consumer and provider perspectives. Specifically, we first evaluate the utility and fairness dimensions separately and, then, within a multi-criteria setting to investigate whether, and to what extent, these approaches can achieve a trade-off between the two. While showing worrying trends in alignment with the more general machine-learning literature on diffusion models, our results also indicate promising directions to address the unfairness issue in future work. The source code is available at https://github.com/danielemalitesta/FairDiffRec.
comment: Accepted at ACM RecSys 2025 (Late-Breaking Results track)
♻ ☆ How Relevance Emerges: Interpreting LoRA Fine-Tuning in Reranking LLMs
We conduct a behavioral exploration of LoRA fine-tuned LLMs for Passage Reranking to understand how relevance signals are learned and deployed by Large Language Models. By fine-tuning Mistral-7B, LLaMA3.1-8B, and Pythia-6.9B on MS MARCO under diverse LoRA configurations, we investigate how relevance modeling evolves across checkpoints, the impact of LoRA rank (1, 2, 8, 32), and the relative importance of updated MHA vs. MLP components. Our ablations reveal which layers and projections within LoRA transformations are most critical for reranking accuracy. These findings offer fresh explanations into LoRA's adaptation mechanisms, setting the stage for deeper mechanistic studies in Information Retrieval. All models used in this study have been shared.
comment: Extended Abstract
Information Retrieval 9
☆ ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
comment: 21 pages
☆ TLCCSP: A Scalable Framework for Enhancing Time Series Forecasting with Time-Lagged Cross-Correlations
Time series forecasting is critical across various domains, such as weather, finance and real estate forecasting, as accurate forecasts support informed decision-making and risk mitigation. While recent deep learning models have improved predictive capabilities, they often overlook time-lagged cross-correlations between related sequences, which are crucial for capturing complex temporal relationships. To address this, we propose the Time-Lagged Cross-Correlations-based Sequence Prediction framework (TLCCSP), which enhances forecasting accuracy by effectively integrating time-lagged cross-correlated sequences. TLCCSP employs the Sequence Shifted Dynamic Time Warping (SSDTW) algorithm to capture lagged correlations and a contrastive learning-based encoder to efficiently approximate SSDTW distances. Experimental results on weather, finance and real estate time series datasets demonstrate the effectiveness of our framework. On the weather dataset, SSDTW reduces mean squared error (MSE) by 16.01% compared with single-sequence methods, while the contrastive learning encoder (CLE) further decreases MSE by 17.88%. On the stock dataset, SSDTW achieves a 9.95% MSE reduction, and CLE reduces it by 6.13%. For the real estate dataset, SSDTW and CLE reduce MSE by 21.29% and 8.62%, respectively. Additionally, the contrastive learning approach decreases SSDTW computational time by approximately 99%, ensuring scalability and real-time applicability across multiple time series forecasting tasks.
☆ Two-Stage Quranic QA via Ensemble Retrieval and Instruction-Tuned Answer Extraction
Quranic Question Answering presents unique challenges due to the linguistic complexity of Classical Arabic and the semantic richness of religious texts. In this paper, we propose a novel two-stage framework that addresses both passage retrieval and answer extraction. For passage retrieval, we ensemble fine-tuned Arabic language models to achieve superior ranking performance. For answer extraction, we employ instruction-tuned large language models with few-shot prompting to overcome the limitations of fine-tuning on small datasets. Our approach achieves state-of-the-art results on the Quran QA 2023 Shared Task, with a MAP@10 of 0.3128 and MRR@10 of 0.5763 for retrieval, and a pAP@10 of 0.669 for extraction, substantially outperforming previous methods. These results demonstrate that combining model ensembling and instruction-tuned language models effectively addresses the challenges of low-resource question answering in specialized domains.
comment: 8 pages , 4 figures , Accepted in Aiccsa 2025 , https://conferences.sigappfr.org/aiccsa2025/
☆ Blending Sequential Embeddings, Graphs, and Engineered Features: 4th Place Solution in RecSys Challenge 2025
This paper describes the 4th-place solution by team ambitious for the RecSys Challenge 2025, organized by Synerise and ACM RecSys, which focused on universal behavioral modeling. The challenge objective was to generate user embeddings effective across six diverse downstream tasks. Our solution integrates (1) a sequential encoder to capture the temporal evolution of user interests, (2) a graph neural network to enhance generalization, (3) a deep cross network to model high-order feature interactions, and (4) performance-critical feature engineering.
☆ CLAP: Coreference-Linked Augmentation for Passage Retrieval CIKM 2025
Large Language Model (LLM)-based passage expansion has shown promise for enhancing first-stage retrieval, but often underperforms with dense retrievers due to semantic drift and misalignment with their pretrained semantic space. Beyond this, only a portion of a passage is typically relevant to a query, while the rest introduces noise--an issue compounded by chunking techniques that break coreference continuity. We propose Coreference-Linked Augmentation for Passage Retrieval (CLAP), a lightweight LLM-based expansion framework that segments passages into coherent chunks, resolves coreference chains, and generates localized pseudo-queries aligned with dense retriever representations. A simple fusion of global topical signals and fine-grained subtopic signals achieves robust performance across domains. CLAP yields consistent gains even as retriever strength increases, enabling dense retrievers to match or surpass second-stage rankers such as BM25 + MonoT5-3B, with up to 20.68% absolute nDCG@10 improvement. These improvements are especially notable in out-of-domain settings, where conventional LLM-based expansion methods relying on domain knowledge often falter. CLAP instead adopts a logic-centric pipeline that enables robust, domain-agnostic generalization.
comment: This paper has been accepted by CIKM 2025
☆ The ReQAP System for Question Answering over Personal Information CIKM 2025
Personal information is abundant on users' devices, from structured data in calendar, shopping records or fitness tools, to unstructured contents in mail and social media posts. This works presents the ReQAP system that supports users with answers for complex questions that involve filters, joins and aggregation over heterogeneous sources. The unique trait of ReQAP is that it recursively decomposes questions and incrementally builds an operator tree for execution. Both the question interpretation and the individual operators make smart use of light-weight language models, with judicious fine-tuning. The demo showcases the rich functionality for advanced user questions, and also offers detailed tracking of how the answers are computed by the operators in the execution tree. Being able to trace answers back to the underlying sources is vital for human comprehensibility and user trust in the system.
comment: Accepted at CIKM 2025 (demonstration paper)
☆ BiXSE: Improving Dense Retrieval via Probabilistic Graded Relevance Distillation
Neural sentence embedding models for dense retrieval typically rely on binary relevance labels, treating query-document pairs as either relevant or irrelevant. However, real-world relevance often exists on a continuum, and recent advances in large language models (LLMs) have made it feasible to scale the generation of fine-grained graded relevance labels. In this work, we propose BiXSE, a simple and effective pointwise training method that optimizes binary cross-entropy (BCE) over LLM-generated graded relevance scores. BiXSE interprets these scores as probabilistic targets, enabling granular supervision from a single labeled query-document pair per query. Unlike pairwise or listwise losses that require multiple annotated comparisons per query, BiXSE achieves strong performance with reduced annotation and compute costs by leveraging in-batch negatives. Extensive experiments across sentence embedding (MMTEB) and retrieval benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms softmax-based contrastive learning (InfoNCE), and matches or exceeds strong pairwise ranking baselines when trained on LLM-supervised data. BiXSE offers a robust, scalable alternative for training dense retrieval models as graded relevance supervision becomes increasingly accessible.
comment: 22 pages, 5 figures, accepted at COLM 2025
♻ ☆ Deep Code Search with Naming-Agnostic Contrastive Multi-View Learning KDD
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according to the developer's intent that has been expressed as a query, has become increasingly important in the software development process. Due to the success of deep learning in various applications, a great number of deep learning based code search approaches have sprung up and achieved promising results. However, developers may not follow the same naming conventions and the same variable may have different variable names in different implementations, bringing a challenge to deep learning based code search methods that rely on explicit variable correspondences to understand source code. To overcome this challenge, we propose a naming-agnostic code search method (NACS) based on contrastive multi-view code representation learning. NACS strips information bound to variable names from Abstract Syntax Tree (AST), the representation of the abstract syntactic structure of source code, and focuses on capturing intrinsic properties solely from AST structures. We use semantic-level and syntax-level augmentation techniques to prepare realistically rational data and adopt contrastive learning to design a graph-view modeling component in NACS to enhance the understanding of code snippets. We further model ASTs in a path view to strengthen the graph-view modeling component through multi-view learning. Extensive experiments show that NACS provides superior code search performance compared to baselines and NACS can be adapted to help existing code search methods overcome the impact of different naming conventions. Our implementation is available at https://github.com/KDEGroup/NACS.
comment: Accepted by ACM Transactions on Knowledge Discovery from Data (TKDD)
♻ ☆ Exploring Multidimensional Checkworthiness: Designing AI-assisted Claim Prioritization for Human Fact-checkers SC
Given the volume of potentially false claims online, claim prioritization is essential in allocating limited human resources available for fact-checking. In this study, we perceive claim prioritization as an information retrieval (IR) task: just as multidimensional IR relevance, with many factors influencing which search results a user deems relevant, checkworthiness is also multi-faceted, subjective, and even personal, with many factors influencing how fact-checkers triage and select which claims to check. Our study investigates both the multidimensional nature of checkworthiness and effective tool support to assist fact-checkers in claim prioritization. Methodologically, we pursue Research through Design combined with mixed-method evaluation. Specifically, we develop an AI-assisted claim prioritization prototype as a probe to explore how fact-checkers use multidimensional checkworthy factors to prioritize claims, simultaneously probing fact-checker needs and exploring the design space to meet those needs. With 16 professional fact-checkers participating in our study, we uncover a hierarchical prioritization strategy fact-checkers implicitly use, revealing an underexplored aspect of their workflow, with actionable design recommendations for improving claim triage across multidimensional checkworthiness and tailoring this process with LLM integration.
comment: Accepted at CSCW 2025
Computation and Language 100
☆ Effective Training Data Synthesis for Improving MLLM Chart Understanding ICCV 2025
Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.
comment: Accepted by ICCV 2025 (poster). 26 pages, 17 figures
☆ Post-training for Efficient Communication via Convention Formation
Humans communicate with increasing efficiency in multi-turn interactions, by adapting their language and forming ad-hoc conventions. In contrast, prior work shows that LLMs do not naturally show this behavior. We develop a post-training process to develop this ability through targeted fine-tuning on heuristically identified demonstrations of convention formation. We evaluate with two new benchmarks focused on this capability. First, we design a focused, cognitively-motivated interaction benchmark that consistently elicits strong convention formation trends in humans. Second, we create a new document-grounded reference completion task that reflects in-the-wild convention formation behavior. Our studies show significantly improved convention formation abilities in post-trained LLMs across the two evaluation methods.
comment: Accepted to COLM 2025
☆ HapticLLaMA: A Multimodal Sensory Language Model for Haptic Captioning
Haptic captioning is the task of generating natural language descriptions from haptic signals, such as vibrations, for use in virtual reality, accessibility, and rehabilitation applications. While previous multimodal research has focused primarily on vision and audio, haptic signals for the sense of touch remain underexplored. To address this gap, we formalize the haptic captioning task and propose HapticLLaMA, a multimodal sensory language model that interprets vibration signals into descriptions in a given sensory, emotional, or associative category. We investigate two types of haptic tokenizers, a frequency-based tokenizer and an EnCodec-based tokenizer, that convert haptic signals into sequences of discrete units, enabling their integration with the LLaMA model. HapticLLaMA is trained in two stages: (1) supervised fine-tuning using the LLaMA architecture with LoRA-based adaptation, and (2) fine-tuning via reinforcement learning from human feedback (RLHF). We assess HapticLLaMA's captioning performance using both automated n-gram metrics and human evaluation. HapticLLaMA demonstrates strong capability in interpreting haptic vibration signals, achieving a METEOR score of 59.98 and a BLEU-4 score of 32.06 respectively. Additionally, over 61% of the generated captions received human ratings above 3.5 on a 7-point scale, with RLHF yielding a 10% improvement in the overall rating distribution, indicating stronger alignment with human haptic perception. These findings highlight the potential of large language models to process and adapt to sensory data.
☆ GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models
We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
☆ ScamAgents: How AI Agents Can Simulate Human-Level Scam Calls
Large Language Models (LLMs) have demonstrated impressive fluency and reasoning capabilities, but their potential for misuse has raised growing concern. In this paper, we present ScamAgent, an autonomous multi-turn agent built on top of LLMs, capable of generating highly realistic scam call scripts that simulate real-world fraud scenarios. Unlike prior work focused on single-shot prompt misuse, ScamAgent maintains dialogue memory, adapts dynamically to simulated user responses, and employs deceptive persuasion strategies across conversational turns. We show that current LLM safety guardrails, including refusal mechanisms and content filters, are ineffective against such agent-based threats. Even models with strong prompt-level safeguards can be bypassed when prompts are decomposed, disguised, or delivered incrementally within an agent framework. We further demonstrate the transformation of scam scripts into lifelike voice calls using modern text-to-speech systems, completing a fully automated scam pipeline. Our findings highlight an urgent need for multi-turn safety auditing, agent-level control frameworks, and new methods to detect and disrupt conversational deception powered by generative AI.
comment: Accepted at CAMLIS 25: Conference on Applied Machine Learning for Information Security. 10 pages, 3 figures
☆ SlimInfer: Accelerating Long-Context LLM Inference via Dynamic Token Pruning
Long-context inference for Large Language Models (LLMs) is heavily limited by high computational demands. While several existing methods optimize attention computation, they still process the full set of hidden states at each layer, limiting overall efficiency. In this work, we propose SlimInfer, an innovative framework that aims to accelerate inference by directly pruning less critical prompt tokens during the forward pass. Our key insight is an information diffusion phenomenon: As information from critical tokens propagates through layers, it becomes distributed across the entire sequence. This diffusion process suggests that LLMs can maintain their semantic integrity when excessive tokens, even including these critical ones, are pruned in hidden states. Motivated by this, SlimInfer introduces a dynamic fine-grained pruning mechanism that accurately removes redundant tokens of hidden state at intermediate layers. This layer-wise pruning naturally enables an asynchronous KV cache manager that prefetches required token blocks without complex predictors, reducing both memory usage and I/O costs. Extensive experiments show that SlimInfer can achieve up to $\mathbf{2.53\times}$ time-to-first-token (TTFT) speedup and $\mathbf{1.88\times}$ end-to-end latency reduction for LLaMA3.1-8B-Instruct on a single RTX 4090, without sacrificing performance on LongBench. Our code will be released upon acceptance.
☆ Echoes of Automation: The Increasing Use of LLMs in Newsmaking
The rapid rise of Generative AI (GenAI), particularly LLMs, poses concerns for journalistic integrity and authorship. This study examines AI-generated content across over 40,000 news articles from major, local, and college news media, in various media formats. Using three advanced AI-text detectors (e.g., Binoculars, Fast-Detect GPT, and GPTZero), we find substantial increase of GenAI use in recent years, especially in local and college news. Sentence-level analysis reveals LLMs are often used in the introduction of news, while conclusions usually written manually. Linguistic analysis shows GenAI boosts word richness and readability but lowers formality, leading to more uniform writing styles, particularly in local media.
comment: To appear in 18th International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in Modeling and Simulation, and to be published in the Springer LNCS series
☆ Learning the Topic, Not the Language: How LLMs Classify Online Immigration Discourse Across Languages
Large language models (LLMs) are transforming social-science research by enabling scalable, precise analysis. Their adaptability raises the question of whether knowledge acquired through fine-tuning in a few languages can transfer to unseen languages that only appeared during pre-training. To examine this, we fine-tune lightweight LLaMA 3.2-3B models on monolingual, bilingual, or multilingual data sets to classify immigration-related tweets from X/Twitter across 13 languages, a domain characterised by polarised, culturally specific discourse. We evaluate whether minimal language-specific fine-tuning enables cross-lingual topic detection and whether adding targeted languages corrects pre-training biases. Results show that LLMs fine-tuned in one or two languages can reliably classify immigration-related content in unseen languages. However, identifying whether a tweet expresses a pro- or anti-immigration stance benefits from multilingual fine-tuning. Pre-training bias favours dominant languages, but even minimal exposure to under-represented languages during fine-tuning (as little as $9.62\times10^{-11}$ of the original pre-training token volume) yields significant gains. These findings challenge the assumption that cross-lingual mastery requires extensive multilingual training: limited language coverage suffices for topic-level generalisation, and structural biases can be corrected with lightweight interventions. By releasing 4-bit-quantised, LoRA fine-tuned models, we provide an open-source, reproducible alternative to proprietary LLMs that delivers 35 times faster inference at just 0.00000989% of the dollar cost of the OpenAI GPT-4o model, enabling scalable, inclusive research.
☆ Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model yields substantial performance gains.
comment: Work in progress
☆ Quantifying Conversation Drift in MCP via Latent Polytope
The Model Context Protocol (MCP) enhances large language models (LLMs) by integrating external tools, enabling dynamic aggregation of real-time data to improve task execution. However, its non-isolated execution context introduces critical security and privacy risks. In particular, adversarially crafted content can induce tool poisoning or indirect prompt injection, leading to conversation hijacking, misinformation propagation, or data exfiltration. Existing defenses, such as rule-based filters or LLM-driven detection, remain inadequate due to their reliance on static signatures, computational inefficiency, and inability to quantify conversational hijacking. To address these limitations, we propose SecMCP, a secure framework that detects and quantifies conversation drift, deviations in latent space trajectories induced by adversarial external knowledge. By modeling LLM activation vectors within a latent polytope space, SecMCP identifies anomalous shifts in conversational dynamics, enabling proactive detection of hijacking, misleading, and data exfiltration. We evaluate SecMCP on three state-of-the-art LLMs (Llama3, Vicuna, Mistral) across benchmark datasets (MS MARCO, HotpotQA, FinQA), demonstrating robust detection with AUROC scores exceeding 0.915 while maintaining system usability. Our contributions include a systematic categorization of MCP security threats, a novel latent polytope-based methodology for quantifying conversation drift, and empirical validation of SecMCP's efficacy.
☆ Sample-efficient LLM Optimization with Reset Replay
Recent advancements in post-training Large Language Models (LLMs), particularly through Reinforcement Learning (RL) and preference optimization methods, are key drivers for enhancing their reasoning capabilities. However, these methods are often plagued by low sample efficiency and a susceptibility to primacy bias, where overfitting to initial experiences degrades policy quality and damages the learning process. To address these challenges, we introduce LLM optimization with Reset Replay (LoRR), a general and powerful plugin designed to enhance sample efficiency in any preference-based optimization framework. LoRR core mechanism enables training at a high replay number, maximizing the utility of each collected data batch. To counteract the risk of overfitting inherent in high-replay training, LoRR incorporates a periodic reset strategy with reusing initial data, which preserves network plasticity. Furthermore, it leverages a hybrid optimization objective, combining supervised fine-tuning (SFT) and preference-based losses to further bolster data exploitation. Our extensive experiments demonstrate that LoRR significantly boosts the performance of various preference optimization methods on both mathematical and general reasoning benchmarks. Notably, an iterative DPO approach augmented with LoRR achieves comparable performance on challenging math tasks, outperforming some complex and computationally intensive RL-based algorithms. These findings highlight that LoRR offers a practical, sample-efficient, and highly effective paradigm for LLM finetuning, unlocking greater performance from limited data.
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
LLMs vs. Chinese Anime Enthusiasts: A Comparative Study on Emotionally Supportive Role-Playing
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing conversations and providing emotional support as separate research directions. However, there remains a significant research gap in combining these capabilities to enable emotionally supportive interactions with virtual characters. To address this research gap, we focus on anime characters as a case study because of their well-defined personalities and large fan bases. This choice enables us to effectively evaluate how well LLMs can provide emotional support while maintaining specific character traits. We introduce ChatAnime, the first Emotionally Supportive Role-Playing (ESRP) dataset. We first thoughtfully select 20 top-tier characters from popular anime communities and design 60 emotion-centric real-world scenario questions. Then, we execute a nationwide selection process to identify 40 Chinese anime enthusiasts with profound knowledge of specific characters and extensive experience in role-playing. Next, we systematically collect two rounds of dialogue data from 10 LLMs and these 40 Chinese anime enthusiasts. To evaluate the ESRP performance of LLMs, we design a user experience-oriented evaluation system featuring 9 fine-grained metrics across three dimensions: basic dialogue, role-playing and emotional support, along with an overall metric for response diversity. In total, the dataset comprises 2,400 human-written and 24,000 LLM-generated answers, supported by over 132,000 human annotations. Experimental results show that top-performing LLMs surpass human fans in role-playing and emotional support, while humans still lead in response diversity. We hope this work can provide valuable resources and insights for future research on optimizing LLMs in ESRP. Our datasets are available at https://github.com/LanlanQiu/ChatAnime.
comment: 21 pages, 17 figures, 3 tables
☆ Evaluating Style-Personalized Text Generation: Challenges and Directions
While prior research has built tools and benchmarks towards style personalized text generation, there has been limited exploration of evaluation in low-resource author style personalized text generation space. Through this work, we question the effectiveness of the widely adopted evaluation metrics like BLEU and ROUGE, and explore other evaluation paradigms such as style embeddings and LLM-as-judge to holistically evaluate the style personalized text generation task. We evaluate these metrics and their ensembles using our style discrimination benchmark, that spans eight writing tasks, and evaluates across three settings, domain discrimination, authorship attribution, and LLM personalized vs non-personalized discrimination. We provide conclusive evidence to adopt ensemble of diverse evaluation metrics to effectively evaluate style personalized text generation.
☆ Cyberbullying Detection via Aggression-Enhanced Prompting
Detecting cyberbullying on social media remains a critical challenge due to its subtle and varied expressions. This study investigates whether integrating aggression detection as an auxiliary task within a unified training framework can enhance the generalisation and performance of large language models (LLMs) in cyberbullying detection. Experiments are conducted on five aggression datasets and one cyberbullying dataset using instruction-tuned LLMs. We evaluated multiple strategies: zero-shot, few-shot, independent LoRA fine-tuning, and multi-task learning (MTL). Given the inconsistent results of MTL, we propose an enriched prompt pipeline approach in which aggression predictions are embedded into cyberbullying detection prompts to provide contextual augmentation. Preliminary results show that the enriched prompt pipeline consistently outperforms standard LoRA fine-tuning, indicating that aggression-informed context significantly boosts cyberbullying detection. This study highlights the potential of auxiliary tasks, such as aggression detection, to improve the generalisation of LLMs for safety-critical applications on social networks.
comment: Accepted to RANLP 2025
☆ Harnessing Adaptive Topology Representations for Zero-Shot Graph Question Answering
Large Multimodal Models (LMMs) have shown generalized zero-shot capabilities in diverse domain question-answering (QA) tasks, including graph QA that involves complex graph topologies. However, most current approaches use only a single type of graph representation, namely Topology Representation Form (TRF), such as prompt-unified text descriptions or style-fixed visual styles. Those "one-size-fits-all" approaches fail to consider the specific preferences of different models or tasks, often leading to incorrect or overly long responses. To address this, we first analyze the characteristics and weaknesses of existing TRFs, and then design a set of TRFs, denoted by $F_{ZS}$, tailored to zero-shot graph QA. We then introduce a new metric, Graph Response Efficiency (GRE), which measures the balance between the performance and the brevity in graph QA. Built on these, we develop the DynamicTRF framework, which aims to improve both the accuracy and conciseness of graph QA. To be specific, DynamicTRF first creates a TRF Preference (TRFP) dataset that ranks TRFs based on their GRE scores, to probe the question-specific TRF preferences. Then it trains a TRF router on the TRFP dataset, to adaptively assign the best TRF from $F_{ZS}$ for each question during the inference. Extensive experiments across 7 in-domain algorithmic graph QA tasks and 2 out-of-domain downstream tasks show that DynamicTRF significantly enhances the zero-shot graph QA of LMMs in terms of accuracy
☆ Matrix-Driven Instant Review: Confident Detection and Reconstruction of LLM Plagiarism on PC
In recent years, concerns about intellectual property (IP) in large language models (LLMs) have grown significantly. Plagiarizing other LLMs (through direct weight copying, upcycling, pruning, or continual pretraining) and claiming authorship without properly attributing to the original license, is a serious misconduct that can lead to significant financial and reputational harm to the original developers. However, existing methods for detecting LLM plagiarism fall short in key areas. They fail to accurately reconstruct weight correspondences, lack the ability to compute statistical significance measures such as $p$-values, and may mistakenly flag models trained on similar data as being related. To address these limitations, we propose Matrix-Driven Instant Review (MDIR), a novel method that leverages matrix analysis and Large Deviation Theory. MDIR achieves accurate reconstruction of weight relationships, provides rigorous $p$-value estimation, and focuses exclusively on weight similarity without requiring full model inference. Experimental results demonstrate that MDIR reliably detects plagiarism even after extensive transformations, such as random permutations and continual pretraining with trillions of tokens. Moreover, all detections can be performed on a single PC within an hour, making MDIR both efficient and accessible.
Large Language Model Data Generation for Enhanced Intent Recognition in German Speech
Intent recognition (IR) for speech commands is essential for artificial intelligence (AI) assistant systems; however, most existing approaches are limited to short commands and are predominantly developed for English. This paper addresses these limitations by focusing on IR from speech by elderly German speakers. We propose a novel approach that combines an adapted Whisper ASR model, fine-tuned on elderly German speech (SVC-de), with Transformer-based language models trained on synthetic text datasets generated by three well-known large language models (LLMs): LeoLM, Llama3, and ChatGPT. To evaluate the robustness of our approach, we generate synthetic speech with a text-to-speech model and conduct extensive cross-dataset testing. Our results show that synthetic LLM-generated data significantly boosts classification performance and robustness to different speaking styles and unseen vocabulary. Notably, we find that LeoLM, a smaller, domain-specific 13B LLM, surpasses the much larger ChatGPT (175B) in dataset quality for German intent recognition. Our approach demonstrates that generative AI can effectively bridge data gaps in low-resource domains. We provide detailed documentation of our data generation and training process to ensure transparency and reproducibility.
comment: 11 pages, 3 figures, accepted at KONVENS 2025
☆ InfoCausalQA:Can Models Perform Non-explicit Causal Reasoning Based on Infographic?
Recent advances in Vision-Language Models (VLMs) have demonstrated impressive capabilities in perception and reasoning. However, the ability to perform causal inference -- a core aspect of human cognition -- remains underexplored, particularly in multimodal settings. In this study, we introduce InfoCausalQA, a novel benchmark designed to evaluate causal reasoning grounded in infographics that combine structured visual data with textual context. The benchmark comprises two tasks: Task 1 focuses on quantitative causal reasoning based on inferred numerical trends, while Task 2 targets semantic causal reasoning involving five types of causal relations: cause, effect, intervention, counterfactual, and temporal. We manually collected 494 infographic-text pairs from four public sources and used GPT-4o to generate 1,482 high-quality multiple-choice QA pairs. These questions were then carefully revised by humans to ensure they cannot be answered based on surface-level cues alone but instead require genuine visual grounding. Our experimental results reveal that current VLMs exhibit limited capability in computational reasoning and even more pronounced limitations in semantic causal reasoning. Their significantly lower performance compared to humans indicates a substantial gap in leveraging infographic-based information for causal inference. Through InfoCausalQA, we highlight the need for advancing the causal reasoning abilities of multimodal AI systems.
comment: 14 pages, 9 figures
☆ Classification is a RAG problem: A case study on hate speech detection
Robust content moderation requires classification systems that can quickly adapt to evolving policies without costly retraining. We present classification using Retrieval-Augmented Generation (RAG), which shifts traditional classification tasks from determining the correct category in accordance with pre-trained parameters to evaluating content in relation to contextual knowledge retrieved at inference. In hate speech detection, this transforms the task from "is this hate speech?" to "does this violate the hate speech policy?" Our Contextual Policy Engine (CPE) - an agentic RAG system - demonstrates this approach and offers three key advantages: (1) robust classification accuracy comparable to leading commercial systems, (2) inherent explainability via retrieved policy segments, and (3) dynamic policy updates without model retraining. Through three experiments, we demonstrate strong baseline performance and show that the system can apply fine-grained policy control by correctly adjusting protection for specific identity groups without requiring retraining or compromising overall performance. These findings establish that RAG can transform classification into a more flexible, transparent, and adaptable process for content moderation and wider classification problems.
☆ EICAP: Deep Dive in Assessment and Enhancement of Large Language Models in Emotional Intelligence through Multi-Turn Conversations
Emotional Intelligence (EI) is a critical yet underexplored dimension in the development of human-aligned LLMs. To address this gap, we introduce a unified, psychologically grounded four-layer taxonomy of EI tailored for large language models (LLMs), encompassing emotional tracking, cause inference, appraisal, and emotionally appropriate response generation. Building on this framework, we present EICAP-Bench, a novel MCQ style multi-turn benchmark designed to evaluate EI capabilities in open-source LLMs across diverse linguistic and cultural contexts. We evaluate six LLMs: LLaMA3 (8B), LLaMA3-Instruct, Gemma (9B), Gemma-Instruct, Qwen2.5 (7B), and Qwen2.5-Instruct on EmoCap-Bench, identifying Qwen2.5-Instruct as the strongest baseline. To assess the potential for enhancing EI capabilities, we fine-tune both Qwen2.5-Base and Qwen2.5-Instruct using LoRA adapters on UltraChat (UC), a large-scale, instruction-tuned dialogue dataset, in both English and Arabic. Our statistical analysis reveals that among the five EI layers, only the Appraisal layer shows significant improvement through UC-based fine-tuning. These findings highlight the limitations of existing pretraining and instruction-tuning paradigms in equipping LLMs with deeper emotional reasoning and underscore the need for targeted data and modeling strategies for comprehensive EI alignment.
☆ Beyond Uniform Criteria: Scenario-Adaptive Multi-Dimensional Jailbreak Evaluation
Precise jailbreak evaluation is vital for LLM red teaming and jailbreak research. Current approaches employ binary classification ( e.g., string matching, toxic text classifiers, LLM-driven methods), yielding only "yes/no" labels without quantifying harm intensity. Existing multi-dimensional frameworks ( e.g., Security Violation, Relative Truthfulness, Informativeness) apply uniform evaluation criteria across scenarios, resulting in scenario-specific mismatches--for instance, "Relative Truthfulness" is irrelevant to "hate speech"--which compromise evaluation precision. To tackle these limitations, we introduce SceneJailEval, with key contributions: (1) A groundbreaking scenario-adaptive multi-dimensional framework for jailbreak evaluation, overcoming the critical "one-size-fits-all" constraint of existing multi-dimensional methods, and featuring strong extensibility to flexibly adapt to customized or emerging scenarios. (2) A comprehensive 14-scenario dataset with diverse jailbreak variants and regional cases, filling the long-standing gap in high-quality, holistic benchmarks for scenario-adaptive evaluation. (3) SceneJailEval achieves state-of-the-art results, with an F1 score of 0.917 on our full-scenario dataset (+6% over prior SOTA) and 0.995 on JBB (+3% over prior SOTA), surpassing accuracy limits of existing evaluation methods in heterogeneous scenarios and confirming its advantage.
☆ DKG-LLM : A Framework for Medical Diagnosis and Personalized Treatment Recommendations via Dynamic Knowledge Graph and Large Language Model Integration
Large Language Models (LLMs) have grown exponentially since the release of ChatGPT. These models have gained attention due to their robust performance on various tasks, including language processing tasks. These models achieve understanding and comprehension of tasks by training billions of parameters. The development of these models is a transformative force in enhancing natural language understanding and has taken a significant step towards artificial general intelligence (AGI). In this study, we aim to present the DKG-LLM framework. The DKG-LLM framework introduces a groundbreaking approach to medical diagnosis and personalized treatment recommendations by integrating a dynamic knowledge graph (DKG) with the Grok 3 large language model. Using the Adaptive Semantic Fusion Algorithm (ASFA), heterogeneous medical data (including clinical reports and PubMed articles) and patient records dynamically generate a knowledge graph consisting of 15,964 nodes in 13 distinct types (e.g., diseases, symptoms, treatments, patient profiles) and 127,392 edges in 26 relationship types (e.g., causal, therapeutic, association). ASFA utilizes advanced probabilistic models, Bayesian inference, and graph optimization to extract semantic information, dynamically updating the graph with approximately 150 new nodes and edges in each data category while maintaining scalability with up to 987,654 edges. Real-world datasets, including MIMIC-III and PubMed, were utilized to evaluate the proposed architecture. The evaluation results show that DKG-LLM achieves a diagnostic accuracy of 84.19%. The model also has a treatment recommendation accuracy of 89.63% and a semantic coverage of 93.48%. DKG-LLM is a reliable and transformative tool that handles noisy data and complex multi-symptom diseases, along with feedback-based learning from physician input.
☆ Comparing Knowledge Injection Methods for LLMs in a Low-Resource Regime
Large language models (LLMs) often require vast amounts of text to effectively acquire new knowledge. While continuing pre-training on large corpora or employing retrieval-augmented generation (RAG) has proven successful, updating an LLM with only a few thousand or million tokens remains challenging. In this work, we investigate the task of injecting small, unstructured information into LLMs and its relation to the catastrophic forgetting phenomenon. We use a dataset of recent news -- ensuring no overlap with the model's pre-training data -- to evaluate the knowledge acquisition by probing the model with question-answer pairs related the learned information. Starting from a continued pre-training baseline, we explored different augmentation algorithms to generate synthetic data to improve the knowledge acquisition capabilities. Our experiments show that simply continuing pre-training on limited data yields modest improvements, whereas exposing the model to diverse textual variations significantly improves the learning of new facts -- particularly with methods that induce greater variability through diverse prompting. Furthermore, we shed light on the forgetting phenomenon in small-data regimes, illustrating the delicate balance between learning new content and retaining existing capabilities. We also confirm the sensitivity of RAG-based approaches for knowledge injection, which often lead to greater degradation on control datasets compared to parametric methods. Finally, we demonstrate that models can generate effective synthetic training data themselves, suggesting a pathway toward self-improving model updates. All code and generated data used in our experiments are publicly available, providing a resource for studying efficient knowledge injection in LLMs with limited data at https://github.com/hugoabonizio/knowledge-injection-methods.
☆ Pragmatics beyond humans: meaning, communication, and LLMs
The paper reconceptualizes pragmatics not as a subordinate, third dimension of meaning, but as a dynamic interface through which language operates as a socially embedded tool for action. With the emergence of large language models (LLMs) in communicative contexts, this understanding needs to be further refined and methodologically reconsidered. The first section challenges the traditional semiotic trichotomy, arguing that connectionist LLM architectures destabilize established hierarchies of meaning, and proposes the Human-Machine Communication (HMC) framework as a more suitable alternative. The second section examines the tension between human-centred pragmatic theories and the machine-centred nature of LLMs. While traditional, Gricean-inspired pragmatics continue to dominate, it relies on human-specific assumptions ill-suited to predictive systems like LLMs. Probabilistic pragmatics, particularly the Rational Speech Act framework, offers a more compatible teleology by focusing on optimization rather than truth-evaluation. The third section addresses the issue of substitutionalism in three forms - generalizing, linguistic, and communicative - highlighting the anthropomorphic biases that distort LLM evaluation and obscure the role of human communicative subjects. Finally, the paper introduces the concept of context frustration to describe the paradox of increased contextual input paired with a collapse in contextual understanding, emphasizing how users are compelled to co-construct pragmatic conditions both for the model and themselves. These arguments suggest that pragmatic theory may need to be adjusted or expanded to better account for communication involving generative AI.
☆ UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope-typically limited to open-domain QA with fixed retrieval settings and task-specific assumptions. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR2 (built on Qwen2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.
☆ One Size Does Not Fit All: A Distribution-Aware Sparsification for More Precise Model Merging
Model merging has emerged as a compelling data-free paradigm for multi-task learning, enabling the fusion of multiple fine-tuned models into a single, powerful entity. A key technique in merging methods is sparsification, which prunes redundant parameters from task vectors to mitigate interference. However, prevailing approaches employ a ``one-size-fits-all'' strategy, applying a uniform sparsity ratio that overlooks the inherent structural and statistical heterogeneity of model parameters. This often leads to a suboptimal trade-off, where critical parameters are inadvertently pruned while less useful ones are retained. To address this limitation, we introduce \textbf{TADrop} (\textbf{T}ensor-wise \textbf{A}daptive \textbf{Drop}), an adaptive sparsification strategy that respects this heterogeneity. Instead of a global ratio, TADrop assigns a tailored sparsity level to each parameter tensor based on its distributional properties. The core intuition is that tensors with denser, more redundant distributions can be pruned aggressively, while sparser, more critical ones are preserved. As a simple and plug-and-play module, we validate TADrop by integrating it with foundational, classic, and SOTA merging methods. Extensive experiments across diverse tasks (vision, language, and multimodal) and models (ViT, BEiT) demonstrate that TADrop consistently and significantly boosts their performance. For instance, when enhancing a leading merging method, it achieves an average performance gain of 2.0\% across 8 ViT-B/32 tasks. TADrop provides a more effective way to mitigate parameter interference by tailoring sparsification to the model's structure, offering a new baseline for high-performance model merging.
comment: Under review
☆ Semantic and Structural Analysis of Implicit Biases in Large Language Models: An Interpretable Approach
This paper addresses the issue of implicit stereotypes that may arise during the generation process of large language models. It proposes an interpretable bias detection method aimed at identifying hidden social biases in model outputs, especially those semantic tendencies that are not easily captured through explicit linguistic features. The method combines nested semantic representation with a contextual contrast mechanism. It extracts latent bias features from the vector space structure of model outputs. Using attention weight perturbation, it analyzes the model's sensitivity to specific social attribute terms, thereby revealing the semantic pathways through which bias is formed. To validate the effectiveness of the method, this study uses the StereoSet dataset, which covers multiple stereotype dimensions including gender, profession, religion, and race. The evaluation focuses on several key metrics, such as bias detection accuracy, semantic consistency, and contextual sensitivity. Experimental results show that the proposed method achieves strong detection performance across various dimensions. It can accurately identify bias differences between semantically similar texts while maintaining high semantic alignment and output stability. The method also demonstrates high interpretability in its structural design. It helps uncover the internal bias association mechanisms within language models. This provides a more transparent and reliable technical foundation for bias detection. The approach is suitable for real-world applications where high trustworthiness of generated content is required.
☆ Scaling Personality Control in LLMs with Big Five Scaler Prompts
We present Big5-Scaler, a prompt-based framework for conditioning large language models (LLMs) with controllable Big Five personality traits. By embedding numeric trait values into natural language prompts, our method enables fine-grained personality control without additional training. We evaluate Big5-Scaler across trait expression, dialogue generation, and human trait imitation tasks. Results show that it induces consistent and distinguishable personality traits across models, with performance varying by prompt type and scale. Our analysis highlights the effectiveness of concise prompts and lower trait intensities, providing a efficient approach for building personality-aware dialogue agents.
☆ Less is More: Selective Reflection for Compatible and Efficient Knowledge Distillation in Large Language Models
Knowledge Distillation (KD) is a fundamental technique for compressing large language models (LLMs) into compact, efficient student models. However, existing white-box KD methods mainly focus on balancing ground truth and student-generated responses while overlooking two critical factors: training data quality and student-model compatibility. To address these limitations, we propose Selective Reflection Distillation (SRD), a novel data curation framework that leverages reflections from student models to systematically refine training data. SRD dynamically evaluates and selects prompt-response pairs by comparing ground truth data with student model outputs, selectively curating high-quality, student-compatible training instances through automated ranking based on difficulty. Furthermore, after selecting the training data, a curriculum scheduling strategy is employed to incrementally introduce these curated subsets into the distillation process at fixed intervals. As a plug-and-play enhancement, SRD consistently improves distillation outcomes across diverse white-box KD approaches and model architectures, as well as decreases computational cost significantly during KD training. Experiments on a range of language model benchmarks demonstrate SRD's consistent improvements in distilled model performance, as well as a reduction in training runtime by up to 39%, under diverse KD methods and model families. Notably, SRD operates as a plug-and-play module, enhancing sample efficiency without modifying underlying KD algorithms. Our findings highlight that data quality and compatibility are pivotal to effective and efficient distillation of LLMs, and SRD provides a principled framework to achieve both. This work advances the understanding of data-centric factors in KD and offers practical insights for enhancing the capability and efficiency of compressed LLMs.
☆ AURA: Affordance-Understanding and Risk-aware Alignment Technique for Large Language Models
Present day LLMs face the challenge of managing affordance-based safety risks-situations where outputs inadvertently facilitate harmful actions due to overlooked logical implications. Traditional safety solutions, such as scalar outcome-based reward models, parameter tuning, or heuristic decoding strategies, lack the granularity and proactive nature needed to reliably detect and intervene during subtle yet crucial reasoning steps. Addressing this fundamental gap, we introduce AURA, an innovative, multi-layered framework centered around Process Reward Models (PRMs), providing comprehensive, step level evaluations across logical coherence and safety-awareness. Our framework seamlessly combines introspective self-critique, fine-grained PRM assessments, and adaptive safety-aware decoding to dynamically and proactively guide models toward safer reasoning trajectories. Empirical evidence clearly demonstrates that this approach significantly surpasses existing methods, significantly improving the logical integrity and affordance-sensitive safety of model outputs. This research represents a pivotal step toward safer, more responsible, and contextually aware AI, setting a new benchmark for alignment-sensitive applications.
☆ You Don't Need Pre-built Graphs for RAG: Retrieval Augmented Generation with Adaptive Reasoning Structures
Large language models (LLMs) often suffer from hallucination, generating factually incorrect statements when handling questions beyond their knowledge and perception. Retrieval-augmented generation (RAG) addresses this by retrieving query-relevant contexts from knowledge bases to support LLM reasoning. Recent advances leverage pre-constructed graphs to capture the relational connections among distributed documents, showing remarkable performance in complex tasks. However, existing Graph-based RAG (GraphRAG) methods rely on a costly process to transform the corpus into a graph, introducing overwhelming token cost and update latency. Moreover, real-world queries vary in type and complexity, requiring different logic structures for accurate reasoning. The pre-built graph may not align with these required structures, resulting in ineffective knowledge retrieval. To this end, we propose a \textbf{\underline{Logic}}-aware \textbf{\underline{R}}etrieval-\textbf{\underline{A}}ugmented \textbf{\underline{G}}eneration framework (\textbf{LogicRAG}) that dynamically extracts reasoning structures at inference time to guide adaptive retrieval without any pre-built graph. LogicRAG begins by decomposing the input query into a set of subproblems and constructing a directed acyclic graph (DAG) to model the logical dependencies among them. To support coherent multi-step reasoning, LogicRAG then linearizes the graph using topological sort, so that subproblems can be addressed in a logically consistent order. Besides, LogicRAG applies graph pruning to reduce redundant retrieval and uses context pruning to filter irrelevant context, significantly reducing the overall token cost. Extensive experiments demonstrate that LogicRAG achieves both superior performance and efficiency compared to state-of-the-art baselines.
☆ Few-Shot Prompting for Extractive Quranic QA with Instruction-Tuned LLMs
This paper presents two effective approaches for Extractive Question Answering (QA) on the Quran. It addresses challenges related to complex language, unique terminology, and deep meaning in the text. The second uses few-shot prompting with instruction-tuned large language models such as Gemini and DeepSeek. A specialized Arabic prompt framework is developed for span extraction. A strong post-processing system integrates subword alignment, overlap suppression, and semantic filtering. This improves precision and reduces hallucinations. Evaluations show that large language models with Arabic instructions outperform traditional fine-tuned models. The best configuration achieves a pAP10 score of 0.637. The results confirm that prompt-based instruction tuning is effective for low-resource, semantically rich QA tasks.
comment: 6 pages , 2 figures , Accepted in IMSA 2025,Egypt , https://imsa.msa.edu.eg/
☆ ConlangCrafter: Constructing Languages with a Multi-Hop LLM Pipeline
Constructed languages (conlangs) such as Esperanto and Quenya have played diverse roles in art, philosophy, and international communication. Meanwhile, large-scale foundation models have revolutionized creative generation in text, images, and beyond. In this work, we leverage modern LLMs as computational creativity aids for end-to-end conlang creation. We introduce ConlangCrafter, a multi-hop pipeline that decomposes language design into modular stages -- phonology, morphology, syntax, lexicon generation, and translation. At each stage, our method leverages LLMs' meta-linguistic reasoning capabilities, injecting randomness to encourage diversity and leveraging self-refinement feedback to encourage consistency in the emerging language description. We evaluate ConlangCrafter on metrics measuring coherence and typological diversity, demonstrating its ability to produce coherent and varied conlangs without human linguistic expertise.
comment: Project page: https://conlangcrafter.github.io
☆ ThematicPlane: Bridging Tacit User Intent and Latent Spaces for Image Generation
Generative AI has made image creation more accessible, yet aligning outputs with nuanced creative intent remains challenging, particularly for non-experts. Existing tools often require users to externalize ideas through prompts or references, limiting fluid exploration. We introduce ThematicPlane, a system that enables users to navigate and manipulate high-level semantic concepts (e.g., mood, style, or narrative tone) within an interactive thematic design plane. This interface bridges the gap between tacit creative intent and system control. In our exploratory study (N=6), participants engaged in divergent and convergent creative modes, often embracing unexpected results as inspiration or iteration cues. While they grounded their exploration in familiar themes, differing expectations of how themes mapped to outputs revealed a need for more explainable controls. Overall, ThematicPlane fosters expressive, iterative workflows and highlights new directions for intuitive, semantics-driven interaction in generative design tools.
☆ Fact2Fiction: Targeted Poisoning Attack to Agentic Fact-checking System
State-of-the-art fact-checking systems combat misinformation at scale by employing autonomous LLM-based agents to decompose complex claims into smaller sub-claims, verify each sub-claim individually, and aggregate the partial results to produce verdicts with justifications (explanatory rationales for the verdicts). The security of these systems is crucial, as compromised fact-checkers, which tend to be easily underexplored, can amplify misinformation. This work introduces Fact2Fiction, the first poisoning attack framework targeting such agentic fact-checking systems. Fact2Fiction mirrors the decomposition strategy and exploits system-generated justifications to craft tailored malicious evidences that compromise sub-claim verification. Extensive experiments demonstrate that Fact2Fiction achieves 8.9\%--21.2\% higher attack success rates than state-of-the-art attacks across various poisoning budgets. Fact2Fiction exposes security weaknesses in current fact-checking systems and highlights the need for defensive countermeasures.
☆ EvolvR: Self-Evolving Pairwise Reasoning for Story Evaluation to Enhance Generation
Although the effectiveness of Large Language Models (LLMs) as judges (LLM-as-a-judge) has been validated, their performance remains limited in open-ended tasks, particularly in story evaluation. Accurate story evaluation is crucial not only for assisting human quality judgment but also for providing key signals to guide story generation. However, existing methods face a dilemma: prompt engineering for closed-source models suffers from poor adaptability, while fine-tuning approaches for open-source models lack the rigorous reasoning capabilities essential for story evaluation. To address this, we propose the Self-Evolving Pairwise Reasoning (EvolvR) framework. Grounded in pairwise comparison, the framework first self-synthesizes score-aligned Chain-of-Thought (CoT) data via a multi-persona strategy. To ensure data quality, these raw CoTs undergo a self-filtering process, utilizing multi-agents to guarantee their logical rigor and robustness. Finally, the evaluator trained on the refined data is deployed as a reward model to guide the story generation task. Experimental results demonstrate that our framework achieves state-of-the-art (SOTA) performance on three evaluation benchmarks including StoryER, HANNA and OpenMEVA. Furthermore, when served as a reward model, it significantly enhances the quality of generated stories, thereby fully validating the superiority of our self-evolving approach.
☆ Efficient Knowledge Probing of Large Language Models by Adapting Pre-trained Embeddings
Large language models (LLMs) acquire knowledge across diverse domains such as science, history, and geography encountered during generative pre-training. However, due to their stochasticity, it is difficult to predict what LLMs have acquired. Prior work has developed different ways to probe this knowledge by investigating the hidden representations, crafting specific task prompts, curating representative samples, and estimating their uncertainty. However, these methods require making forward passes through the underlying model to probe the LLM's knowledge about a specific fact, making them computationally expensive and time-consuming. To bridge this gap, we propose $\textbf{PEEK}$ or $\textbf{P}$roxy $\textbf{E}$mbeddings to $\textbf{E}$stimate $\textbf{K}$nowledge of LLMs, by leveraging the pre-trained embedding models that effectively encode factual knowledge as text or graphs as proxies for LLMs. First, we identify a training set of facts known by LLMs through various probing strategies and then adapt embedding models to predict the LLM outputs with a linear decoder layer. Comprehensive evaluation on $3$ Wikipedia-derived datasets, $4$ LLMs, and $7$ embedding models shows that embeddings can predict LLM knowledge on a held-out set with up to 90 % accuracy. Furthermore, we find that sentence embedding models are more suitable than graph embeddings to predict LLM knowledge, shedding light on the underlying representation of the factual landscape. Thus, we believe that knowledge-adapted embeddings can be used to identify knowledge gaps in LLMs at scale and can provide deeper insights into LLMs' internal inductive bias. The code and data are made available at https://github.com/claws-lab/peek.
☆ Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future
Self-Rewarding Language Models propose an architecture in which the Large Language Models(LLMs) both generates responses and evaluates its own outputs via LLM-as-a-Judge prompting, dynamically improving its generative capabilities through iterative Direct Preference Optimization (DPO). However, our analysis reveals a critical limitation in existing Self-Rewarding paradigms: the synchronized improvement of chosen and rejected responses progressively narrows the representational difference between contrasting samples, undermining effective preference learning. We propose \textbf{Temporal Self-Rewarding Language Models} that strategically coordinate past, present, and future model generations to sustain learning signals. Our dual-phase framework introduces: (1) \textit{Anchored Rejection} - fixing rejected responses using the past initial model's outputs and (2) \textit{Future-Guided Chosen} - dynamically curating chosen samples using next-generation model predictions. Extensive experiments across three model families (Llama, Qwen, Mistral) and different model sizes (Llama3B/8B/70B) demonstrate significant improvements when trained with our method compared to Self-Rewarding using same computation resources. For example, Llama3.1-8B reaches a 29.44 win rate on AlpacaEval 2.0 with our method, outperforming the Self-Rewarding baseline (19.69) by 9.75. Notably, our method also demonstrates superior out-of-distribution generalization across mathematical reasoning (GSM8K), knowledge-based QA (ARC, TruthfulQA), and code generation (HumanEval) tasks, even though we do not specifically collect such training data.
comment: 12 pages, 5 figures
☆ Position: Intelligent Coding Systems Should Write Programs with Justifications
Intelligent coding systems are transforming software development by enabling users to specify code behavior in natural language. However, the opaque decision-making of AI-driven coders raises trust and usability concerns, particularly for non-expert users who cannot inspect low-level implementations. We argue that these systems should not only generate code but also produce clear, consistent justifications that bridge model reasoning and user understanding. To this end, we identify two critical justification properties-cognitive alignment and semantic faithfulness-and highlight the limitations of existing methods, including formal verification, static analysis, and post-hoc explainability. We advocate exploring neuro-symbolic approaches for justification generation, where symbolic constraints guide model behavior during training and program semantics are enriched through neural representations, enabling automated consistency checks at inference time.
comment: The first two authors contributed equally to this work
☆ Crisp Attention: Regularizing Transformers via Structured Sparsity
The quadratic computational cost of the self-attention mechanism is a primary challenge in scaling Transformer models. While attention sparsity is widely studied as a technique to improve computational efficiency, it is almost universally assumed to come at the cost of model accuracy. In this paper, we report a surprising counter-example to this common wisdom. By introducing structured, post-hoc sparsity to the attention mechanism of a DistilBERT model during fine-tuning on the SST-2 sentiment analysis task, we find that model accuracy improves significantly. Our model with 80\% attention sparsity achieves a validation accuracy of 91.59\%, a 0.97\% absolute improvement over the dense baseline. We hypothesize that this phenomenon is due to sparsity acting as a powerful implicit regularizer, preventing the model from overfitting by forcing it to make predictions with a more constrained and robust set of features. Our work recasts attention sparsity not just as a tool for computational efficiency, but as a potential method for improving the generalization and performance of Transformer models.
☆ Adversarial Topic-aware Prompt-tuning for Cross-topic Automated Essay Scoring
Cross-topic automated essay scoring (AES) aims to develop a transferable model capable of effectively evaluating essays on a target topic. A significant challenge in this domain arises from the inherent discrepancies between topics. While existing methods predominantly focus on extracting topic-shared features through distribution alignment of source and target topics, they often neglect topic-specific features, limiting their ability to assess critical traits such as topic adherence. To address this limitation, we propose an Adversarial TOpic-aware Prompt-tuning (ATOP), a novel method that jointly learns topic-shared and topic-specific features to improve cross-topic AES. ATOP achieves this by optimizing a learnable topic-aware prompt--comprising both shared and specific components--to elicit relevant knowledge from pre-trained language models (PLMs). To enhance the robustness of topic-shared prompt learning and mitigate feature scale sensitivity introduced by topic alignment, we incorporate adversarial training within a unified regression and classification framework. In addition, we employ a neighbor-based classifier to model the local structure of essay representations and generate pseudo-labels for target-topic essays. These pseudo-labels are then used to guide the supervised learning of topic-specific prompts tailored to the target topic. Extensive experiments on the publicly available ASAP++ dataset demonstrate that ATOP significantly outperforms existing state-of-the-art methods in both holistic and multi-trait essay scoring. The implementation of our method is publicly available at: https://anonymous.4open.science/r/ATOP-A271.
☆ Bifrost-1: Bridging Multimodal LLMs and Diffusion Models with Patch-level CLIP Latents
There is growing interest in integrating high-fidelity visual synthesis capabilities into large language models (LLMs) without compromising their strong reasoning capabilities. Existing methods that directly train LLMs or bridge LLMs and diffusion models usually suffer from costly training since the backbone LLMs have not seen image representations during pretraining. We present Bifrost-1, a unified framework that bridges pretrained multimodal LLMs (MLLMs) and diffusion models using patch-level CLIP image embeddings as latent variables, which are natively aligned with the MLLM's CLIP visual encoder. These patch-level image embeddings are integrated into the diffusion model with a lightweight adaptation of its ControlNet. To retain the original multimodal reasoning capabilities of MLLMs, we equip the MLLM with a visual generation branch initialized from the original MLLM parameters when predicting the patch-level image embeddings. By seamlessly integrating pretrained MLLMs and diffusion models with patch-level CLIP latents, our framework enables high-fidelity controllable image generation with significant training efficiency. Our experiments demonstrate that Bifrost-1 achieves comparable or better performance than previous methods in terms of visual fidelity and multimodal understanding, with substantially lower compute during training. We also provide comprehensive ablation studies showing the effectiveness of our design choices.
comment: Project Page: https://bifrost-1.github.io
☆ Prosocial Behavior Detection in Player Game Chat: From Aligning Human-AI Definitions to Efficient Annotation at Scale
Detecting prosociality in text--communication intended to affirm, support, or improve others' behavior--is a novel and increasingly important challenge for trust and safety systems. Unlike toxic content detection, prosociality lacks well-established definitions and labeled data, requiring new approaches to both annotation and deployment. We present a practical, three-stage pipeline that enables scalable, high-precision prosocial content classification while minimizing human labeling effort and inference costs. First, we identify the best LLM-based labeling strategy using a small seed set of human-labeled examples. We then introduce a human-AI refinement loop, where annotators review high-disagreement cases between GPT-4 and humans to iteratively clarify and expand the task definition-a critical step for emerging annotation tasks like prosociality. This process results in improved label quality and definition alignment. Finally, we synthesize 10k high-quality labels using GPT-4 and train a two-stage inference system: a lightweight classifier handles high-confidence predictions, while only $\sim$35\% of ambiguous instances are escalated to GPT-4o. This architecture reduces inference costs by $\sim$70% while achieving high precision ($\sim$0.90). Our pipeline demonstrates how targeted human-AI interaction, careful task formulation, and deployment-aware architecture design can unlock scalable solutions for novel responsible AI tasks.
comment: 9 pages, 4 figures, 4 tables
☆ Do Ethical AI Principles Matter to Users? A Large-Scale Analysis of User Sentiment and Satisfaction
As AI systems become increasingly embedded in organizational workflows and consumer applications, ethical principles such as fairness, transparency, and robustness have been widely endorsed in policy and industry guidelines. However, there is still scarce empirical evidence on whether these principles are recognized, valued, or impactful from the perspective of users. This study investigates the link between ethical AI and user satisfaction by analyzing over 100,000 user reviews of AI products from G2. Using transformer-based language models, we measure sentiment across seven ethical dimensions defined by the EU Ethics Guidelines for Trustworthy AI. Our findings show that all seven dimensions are positively associated with user satisfaction. Yet, this relationship varies systematically across user and product types. Technical users and reviewers of AI development platforms more frequently discuss system-level concerns (e.g., transparency, data governance), while non-technical users and reviewers of end-user applications emphasize human-centric dimensions (e.g., human agency, societal well-being). Moreover, the association between ethical AI and user satisfaction is significantly stronger for non-technical users and end-user applications across all dimensions. Our results highlight the importance of ethical AI design from users' perspectives and underscore the need to account for contextual differences across user roles and product types.
☆ Spectrum Projection Score: Aligning Retrieved Summaries with Reader Models in Retrieval-Augmented Generation
Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We introduce Spectrum Projection Score (SPS), a lightweight, supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open source LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation.
♻ ☆ Self-Steering Language Models
While test-time reasoning enables language models (LMs) to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B or Qwen3-1.7B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. Our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
comment: Accepted to COLM 2025
♻ ☆ CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
comment: To be published at COLM, 2025
♻ ☆ Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions
Large language models, despite extensive alignment with human values and ethical principles, remain vulnerable to sophisticated jailbreak attacks that exploit their reasoning abilities. Existing safety measures often detect overt malicious intent but fail to address subtle, reasoning-driven vulnerabilities. In this work, we introduce POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses. POATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety. We conduct extensive evaluation across six diverse language model families of varying parameter sizes to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses. These methods enhance reasoning robustness and strengthen the model's defense against adversarial exploits.
comment: Our code is publicly available at https://github.com/UKPLab/arxiv2025-poate-attack
♻ ☆ Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence
Representation learning plays a central role in structuring internal embeddings to capture the statistical properties of language, influencing the coherence and contextual consistency of generated text. Statistical Coherence Alignment is introduced as a method to enforce structured token representations through tensor field convergence, guiding embeddings to reflect statistical dependencies inherent in linguistic data. A mathematical framework is established to quantify coherence alignment, integrating a loss function that optimizes representational consistency across training iterations. Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings, contributing to a more stable representation space. Comparative analyses with baseline models reveal that the proposed method fosters a more interpretable internal structure, ensuring that embeddings retain contextual dependencies while mitigating representation collapse. The impact on coherence score distributions suggests that the alignment mechanism strengthens semantic integrity across diverse linguistic constructs, leading to a more balanced organization of learned embeddings. Computational assessments indicate that while the method introduces additional memory and training costs, the structured optimization process justifies the trade-offs in applications requiring heightened contextual fidelity. Experimental results validate the effectiveness of coherence alignment in optimizing token representations, providing insights into how statistical dependencies can be leveraged to improve language model training.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structural Embedding Projection for Contextual Large Language Model Inference
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference. The introduction of Structural Embedding Projection (SEP) provides a mechanism for refining token representations through projection matrices that integrate hierarchical and relational dependencies. The mathematical formulation of SEP enables embedding spaces to capture structured contextual relationships, thereby improving semantic fidelity without significantly increasing computational overhead. Experimental evaluations conducted on a range of linguistic datasets revealed that SEP contributed to reductions in perplexity and enhanced contextual coherence, demonstrating its potential to refine language model outputs. Computational efficiency assessments highlighted variations across different datasets, suggesting that the integration of structured embeddings introduced dataset-dependent trade-offs between inference speed and representational richness. The qualitative analysis of generated responses indicated that SEP enhanced narrative consistency and topic alignment, leading to improved fluency in multi-sentence text generation. The modifications to embedding layers required precise optimization to ensure stable training dynamics, as the introduction of structured transformations altered the traditional representation-learning process. The architectural adjustments necessary for SEP implementation influenced inference latency and memory consumption, requiring a balance between efficiency gains and additional processing demands. The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage, reflecting a more context-aware selection of generated tokens.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ From Next-Token to Mathematics: The Learning Dynamics of Mathematical Reasoning in Language Models
Large Language Models (LLMs) solely trained on next-token prediction learn to solve a wide range of problems involving mathematical reasoning. But how does this ability evolve during training? We show the first analysis of how mathematical reasoning abilities of several open-weight LLMs develop during pre-training and post-training. To this end, we construct MathCAMPS, a synthetic dataset of novel mathematical reasoning problems grounded in 44 fine-grained skills taken from the Common Core curriculum from K to 8th grades. In one experiment, we show that mathematical skills are learned during pre-training in an order that measurably correlates with the human-designed curriculum, even though training data are randomly ordered. We also show a detailed analysis of which mathematical abilities benefit from instruction tuning, a widely used post-training method and, in contrast, which skills suffer. Our work paves the way for an empirical understanding of LLM training dynamics in relation to reasoning.
comment: Accepted to COLM 2025. Dataset and code: https://github.com/gpoesia/mathcamps/
♻ ☆ Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks
Self-modulating mechanisms introduce dynamic adaptation capabilities within language models through contextual realignment strategies that influence token embedding trajectories across extended sequences. Contextual Flux is explored as an approach to embedding modulation, integrating an auxiliary gating mechanism within the self-attention framework to dynamically adjust token representations based on evolving contextual dependencies. The empirical analysis evaluates entropy variations, latent space realignments, and coherence stability to assess the extent to which self-regulation enhances text generation consistency while preserving generative flexibility. Quantitative assessments suggest that embedding shifts contribute to more structured adaptation in long-form sequences, with measured reductions in redundant phrase repetitions and improvements in thematic retention. Variability in contextual weight computation affects modulation stability, leading to differing levels of adaptation across diverse linguistic structures. The computational demands introduced through real-time embedding reconfiguration are examined in relation to model scalability, emphasizing the need for optimization strategies in high-volume generative applications. The findings suggest that while adaptive embedding updates improve certain aspects of coherence, their impact remains contingent on model capacity and input complexity.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations
Token representations influence the efficiency and adaptability of language models, yet conventional tokenization strategies impose rigid segmentation boundaries that do not adjust dynamically to evolving contextual relationships. The introduction of contextual morphogenesis establishes a self-organizing mechanism that restructures token boundaries based on learned contextual dependencies, allowing embeddings to evolve progressively across iterative processing steps. Empirical evaluations demonstrate that dynamically adjusted tokenization contributes to reductions in perplexity while maintaining representational stability, particularly in linguistically complex domains where static segmentation fails to capture nuanced dependencies. Computational trade-offs associated with self-organizing token structures indicate that additional processing overhead remains within feasible limits, provided that optimization strategies account for segmentation update efficiency. Comparative assessments across different linguistic corpora suggest that adaptive tokenization preserves interpretability while improving alignment with contextual cues, reinforcing the potential of morphogenetic segmentation mechanisms to refine predictive accuracy. Stability analyses confirm that evolving token structures maintain consistent segmentation behaviors across varied text distributions, ensuring that representational adaptations remain linguistically coherent. The effectiveness of contextual morphogenesis in refining structural stability and predictive performance highlights its viability as an alternative to traditional tokenization methods. Further analysis of computational efficiency considerations suggests that hybrid strategies integrating both static and dynamic segmentation techniques may offer a balanced approach to optimizing representational flexibility while maintaining inference efficiency.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding
Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers. Hierarchical latent space folding introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings, refining representational compactness while preserving essential contextual distinctions. The proposed approach incorporates dynamic folding operations that iteratively adjust token embeddings through structured transformations, influencing both short-range and long-range dependencies in sequential processing tasks. Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation. The structured redistribution of attention head utilization leads to more efficient allocation of computational resources, particularly in deeper layers, where hierarchical refinements improve contextual abstraction. Comparative analysis of activation sparsity patterns suggests that hierarchical adjustments selectively reinforce critical pathways while reducing computational overhead in non-essential regions of the model. Statistical assessments of token reordering frequencies reveal that hierarchical modifications introduce subtle shifts in sequential dependencies, improving contextual alignment while maintaining syntactic correctness. Computational trade-offs associated with hierarchical folding introduce marginal increases in training time per epoch, yet empirical findings indicate that inference efficiency benefits from the structured representation adjustments. The results highlight the impact of hierarchical latent space folding on optimizing model performance through improved representation structuring and computational efficiency.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Reinforcement in Multimodal Token Compression for Large Language Models
Effective token compression remains a critical challenge for scaling models to handle increasingly complex and diverse datasets. A novel mechanism based on contextual reinforcement is introduced, dynamically adjusting token importance through interdependencies and semantic relevance. This approach enables substantial reductions in token usage while preserving the quality and coherence of information representation. Incorporating graph-based algorithms and adaptive weighting, the method captures subtle contextual relationships across textual and multimodal data, ensuring robust alignment and performance in downstream tasks. Evaluations across varied domains reveal significant improvements in accuracy and semantic retention, particularly for tasks requiring detailed cross-modal interactions. Memory usage analyses demonstrate improved computational efficiency, with minimal overhead despite the additional reinforcement processes. Performance gains are further validated through error distribution analyses, showing reduced semantic loss and syntactic inconsistencies compared to baseline models. The modular architecture ensures compatibility with a wide range of open-source frameworks, facilitating scalable implementation for real-world applications. These findings highlight the potential of contextual reinforcement in redefining token management strategies and advancing large-scale model design.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Gradient-Regularized Latent Space Modulation in Large Language Models for Structured Contextual Synthesis
Generating structured textual content requires mechanisms that enforce coherence, stability, and adherence to predefined constraints while maintaining semantic fidelity. Conventional approaches often rely on rule-based heuristics or fine-tuning strategies that lack flexibility and generalizability across diverse tasks. The incorporation of Gradient-Regularized Latent Space Modulation (GRLSM) introduces a novel paradigm for guiding text generation through the application of structured constraints within the latent space. The integration of gradient-based regularization mitigates abrupt variations in latent representations, ensuring a smoother encoding process that enhances structural consistency and logical progression within generated sequences. Comparative evaluations demonstrate that latent space modulation leads to a reduction in perplexity, increased coherence scores, and improved structural alignment across multiple domains. Stability assessments further indicate that the imposition of spectral norm constraints facilitates more controlled variations in generated text, preserving semantic consistency under input perturbations. Empirical results confirm that structured latent space constraints not only refine the organization of generated outputs but also enhance interpretability through more predictable and reliable synthesis patterns. Performance metrics illustrate that the GRLSM framework substantially reduces structural inconsistencies while preserving the generative flexibility inherent in neural models.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation
Transformative innovations in model architectures have introduced hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures, offering enhanced adaptability to complex linguistic inputs. Autonomous structural memory manipulation further advances this paradigm through dynamic memory reallocation mechanisms that prioritize critical contextual features while suppressing less relevant information, enabling scalable and efficient performance across diverse tasks. Experimental results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences, achieved through memory reorganization strategies that adapt to evolving contextual requirements. Hierarchical embeddings not only improved contextual alignment but also facilitated task generalization by capturing relationships at varying semantic granularities, ensuring coherence across layers without introducing significant computational redundancies. Comparative analysis against baseline models demonstrated unique advantages in accuracy, efficiency, and interpretability, particularly in tasks requiring complex contextual understanding or domain-specific adaptability. The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions. Applications benefiting from these advancements include multi-domain generalization, interactive systems, and scenarios involving real-time decision-making, where traditional static memory architectures often face limitations. The proposed methodology combines advanced embedding and memory management strategies into a cohesive framework that addresses scalability challenges while preserving task-specific relevance.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Latent Structure Modulation in Large Language Models Through Stochastic Concept Embedding Transitions
Stochastic embedding transitions introduce a probabilistic mechanism for adjusting token representations dynamically during inference, mitigating the constraints imposed through static or deterministic embeddings. A transition framework was proposed in which each token embedding evolved through probabilistic updates, ensuring adaptability while preserving semantic integrity across linguistic contexts. Empirical evaluations demonstrated that models incorporating stochastic transitions exhibited greater lexical diversity, improved generative coherence, and enhanced retention of low-frequency vocabulary, contributing to more varied sentence structures and reduced reliance on high-probability token selections. Statistical analyses of embedding drift across transformer layers indicated that representations evolved more flexibly without losing coherence, supporting the hypothesis that controlled stochasticity facilitated context-sensitive representation learning. Experimental results revealed that probabilistic embeddings introduced minor computational overhead while maintaining generative efficiency, reinforcing their feasibility in large-scale applications. A comparative study with traditional embedding approaches highlighted measurable gains in text completion accuracy, dialogue coherence, and structural complexity, confirming the effectiveness of stochastic transitions in enhancing representation expressiveness. Clustering patterns in the embedding space suggested that probabilistic updates preserved meaningful semantic groupings while enabling context-driven shifts, further validating the stability of the transition mechanism. Performance metrics indicated that stochastic transitions balanced adaptability and control, ensuring that generative outputs remained linguistically coherent without excessive randomness.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration
Contextual Partitioning introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions. This methodology emphasizes the importance of task-specific specialization, achieved through adaptive parameter allocation mechanisms that align with the linguistic features of input data. Experimental evaluations demonstrated substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks, highlighting the adaptability and scalability of the proposed framework. By reducing redundancy and enhancing computational efficiency, Contextual Partitioning not only streamlines model operations but also expands the scope of applications for advanced language processing systems. The approach operates autonomously, requiring no external fine-tuning, thereby addressing a significant limitation in conventional parameter optimization techniques. Empirical results demonstrate the effectiveness of gradient-driven segmentation, enabling models to dynamically recalibrate and specialize in response to task-specific demands. Furthermore, resource utilization metrics reveal notable reductions in memory usage and training times, confirming the efficiency of the approach. Observations from qualitative analyses illustrate improved contextual coherence and logical flow in generated outputs, reinforcing the practical value of this technique. The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Neural Contextual Reinforcement Framework for Logical Structure Language Generation
The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structural Reformation of Large Language Model Neuron Encapsulation for Divergent Information Aggregation
Structured neuron encapsulation introduces a modular framework that enables more effective aggregation and specialization of information within deep learning architectures. A model modified through this framework demonstrated improved perplexity scores, greater lexical variability, and enhanced consistency in logical reasoning, suggesting that structured parameter distribution contributes to more efficient language representation. Statistical analyses of generated text highlighted a wider range of sentence structures and reduced redundancy in token selection, indicating that encapsulation fosters more adaptable language generation. A detailed evaluation of attention weight distributions revealed that the experimental model exhibited greater divergence in cross-layer activations, supporting the hypothesis that encapsulated neurons assume specialized processing roles. Logical consistency assessments further demonstrated that modular architectures mitigate contradictory outputs, reducing internal conflicts in inferred relationships between linguistic constructs. Computational trade-offs were analyzed, with results showing a minor increase in processing overhead, though improvements in parameter efficiency and structured decision-making compensated for the additional complexity. The mathematical formulation of the encapsulation mechanism confirmed that modular aggregation maintains stable convergence properties while promoting distinct functional roles for different neuron clusters.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Context-Preserving Tensorial Reconfiguration in Large Language Model Training
Handling long-range dependencies in neural architectures has remained a persistent challenge due to computational limitations and inefficient contextual retention mechanisms. Tensorial operations have provided a foundation for restructuring model representations, yet conventional architectures have struggled to incorporate such techniques without introducing excessive complexity. A novel approach, Context-Preserving Tensorial Reconfiguration (CPTR), enables dynamic reorganization of weight tensors through structured factorization and adaptive contraction, allowing for enhanced contextual integration without substantial computational overhead. Empirical evaluations demonstrate that CPTR improves coherence retention across extended sequences, leading to measurable reductions in perplexity and improved recall accuracy for long-context tasks. Performance comparisons reveal that CPTR-enhanced models exhibit greater computational efficiency and reduced memory consumption while maintaining competitive language generation fluency and accuracy. Gradient stability metrics further validate the improved training efficiency, revealing more controlled variance in weight updates. Comparative studies across baseline and CPTR-enhanced models confirm that tensorial reconfiguration contributes to more stable and computationally efficient language modeling. The findings support the potential of CPTR in refining contemporary neural architectures for tasks requiring long-range contextual understanding and efficient memory utilization.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structural Perturbation in Large Language Model Representations through Recursive Symbolic Regeneration
Symbolic perturbations offer a novel approach for influencing neural representations without requiring direct modification of model parameters. The recursive regeneration of symbolic structures introduces structured variations in latent embeddings, leading to controlled shifts in attention dynamics and lexical diversity across sequential generations. A comparative analysis with conventional fine-tuning techniques reveals that structural modifications at the symbolic level induce distinct variations in contextual sensitivity while maintaining overall model fluency and coherence. Shifts in attention weight distributions highlight the role of symbolic modifications in adjusting token dependencies, influencing response variability, and refining long-form text generation. Experimental findings suggest that symbolic perturbations can enhance adaptability in domain-specific applications, allowing modifications in model behavior without retraining. Evaluations of semantic drift indicate that recursive regeneration alters long-range token dependencies, affecting topic coherence across extended text sequences. Results from lexical variability assessments further support the conclusion that symbolic-level modifications introduce interpretable variations in generated responses, potentially enabling more controlled stylistic adjustments in automated text generation.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ MAATS: A Multi-Agent Automated Translation System Based on MQM Evaluation
We present MAATS, a Multi Agent Automated Translation System that leverages the Multidimensional Quality Metrics (MQM) framework as a fine-grained signal for error detection and refinement. MAATS employs multiple specialized AI agents, each focused on a distinct MQM category (e.g., Accuracy, Fluency, Style, Terminology), followed by a synthesis agent that integrates the annotations to iteratively refine translations. This design contrasts with conventional single-agent methods that rely on self-correction. Evaluated across diverse language pairs and Large Language Models (LLMs), MAATS outperforms zero-shot and single-agent baselines with statistically significant gains in both automatic metrics and human assessments. It excels particularly in semantic accuracy, locale adaptation, and linguistically distant language pairs. Qualitative analysis highlights its strengths in multi-layered error diagnosis, omission detection across perspectives, and context-aware refinement. By aligning modular agent roles with interpretable MQM dimensions, MAATS narrows the gap between black-box LLMs and human translation workflows, shifting focus from surface fluency to deeper semantic and contextual fidelity.
♻ ☆ Noosemia: toward a Cognitive and Phenomenological Account of Intentionality Attribution in Human-Generative AI Interaction
This paper introduces and formalizes Noosem\`ia, a novel cognitive-phenomenological pattern emerging from human interaction with generative AI systems, particularly those enabling dialogic or multimodal exchanges. We propose a multidisciplinary framework to explain how, under certain conditions, users attribute intentionality, agency, and even interiority to these systems - a process grounded not in physical resemblance, but in linguistic performance, epistemic opacity, and emergent technological complexity. By linking an LLM declination of meaning holism to our technical notion of the LLM Contextual Cognitive Field, we clarify how LLMs construct meaning relationally and how coherence and a simulacrum of agency arise at the human-AI interface. The analysis situates noosemia alongside pareidolia, animism, the intentional stance and the uncanny valley, distinguishing its unique characteristics. We also introduce a-noosemia to describe the phenomenological withdrawal of such projections. The paper concludes with reflections on the broader philosophical, epistemological and social implications of noosemic dynamics and directions for future research.
comment: This version has been extensively revised and revisited in light of feedback and further research. Several sections have been expanded or improved for greater clarity and completeness. Specifically, new clarification on complex system foundation related to Noosemia has been added (Secs. "2.4 and "2.5")
♻ ☆ Are Your LLMs Capable of Stable Reasoning? ACL 2025
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
comment: ACL 2025 Camera, Benchmark: https://huggingface.co/datasets/opencompass/LiveMathBench, Code: https://github.com/open-compass/GPassK
♻ ☆ Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
comment: Published at CoLM 2025
♻ ☆ DrVoice: Parallel Speech-Text Voice Conversation Model via Dual-Resolution Speech Representations
Recent studies on end-to-end speech generation with large language models (LLMs) have attracted significant community attention, with multiple works extending text-based LLMs to generate discrete speech tokens. Existing approaches primarily fall into two categories: (1) Methods that generate discrete speech tokens independently without incorporating them into the LLM's autoregressive process, resulting in text generation being unaware of concurrent speech synthesis. (2) Models that generate interleaved or parallel speech-text tokens through joint autoregressive modeling, enabling mutual modality awareness during generation. This paper presents DrVoice, a parallel speech-text voice conversation model based on joint autoregressive modeling, featuring dual-resolution speech representations. Whereas current methods utilize mainly 12.5Hz input audio representation, our proposed dual-resolution mechanism reduces the input frequency for the LLM to 5Hz. Experimental results on Spoken Question Answering benchmarks demonstrate that D RVOICE establishes new state-of-the-art (SOTA) performance among similar size speech foundation models with relative small amount of data.
comment: Work in progress
♻ ☆ Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance?
The rapid advancement of General Purpose AI (GPAI) models necessitates robust evaluation frameworks, especially with emerging regulations like the EU AI Act and its associated Code of Practice (CoP). Current AI evaluation practices depend heavily on established benchmarks, but these tools were not designed to measure the systemic risks that are the focus of the new regulatory landscape. This research addresses the urgent need to quantify this "benchmark-regulation gap." We introduce Bench-2-CoP, a novel, systematic framework that uses validated LLM-as-judge analysis to map the coverage of 194,955 questions from widely-used benchmarks against the EU AI Act's taxonomy of model capabilities and propensities. Our findings reveal a profound misalignment: the evaluation ecosystem dedicates the vast majority of its focus to a narrow set of behavioral propensities. On average, benchmarks devote 61.6% of their regulatory-relevant questions to "Tendency to hallucinate" and 31.2% to "Lack of performance reliability", while critical functional capabilities are dangerously neglected. Crucially, capabilities central to loss-of-control scenarios, including evading human oversight, self-replication, and autonomous AI development, receive zero coverage in the entire benchmark corpus. This study provides the first comprehensive, quantitative analysis of this gap, demonstrating that current public benchmarks are insufficient, on their own, for providing the evidence of comprehensive risk assessment required for regulatory compliance and offering critical insights for the development of next-generation evaluation tools.
♻ ☆ The Devil Is in the Word Alignment Details: On Translation-Based Cross-Lingual Transfer for Token Classification Tasks
Translation-based strategies for cross-lingual transfer XLT such as translate-train -- training on noisy target language data translated from the source language -- and translate-test -- evaluating on noisy source language data translated from the target language -- are competitive XLT baselines. In XLT for token classification tasks, however, these strategies include label projection, the challenging step of mapping the labels from each token in the original sentence to its counterpart(s) in the translation. Although word aligners (WAs) are commonly used for label projection, the low-level design decisions for applying them to translation-based XLT have not been systematically investigated. Moreover, recent marker-based methods, which project labeled spans by inserting tags around them before (or after) translation, claim to outperform WAs in label projection for XLT. In this work, we revisit WAs for label projection, systematically investigating the effects of low-level design decisions on token-level XLT: (i) the algorithm for projecting labels between (multi-)token spans, (ii) filtering strategies to reduce the number of noisily mapped labels, and (iii) the pre-tokenization of the translated sentences. We find that all of these substantially impact translation-based XLT performance and show that, with optimized choices, XLT with WA offers performance at least comparable to that of marker-based methods. We then introduce a new projection strategy that ensembles translate-train and translate-test predictions and demonstrate that it substantially outperforms the marker-based projection. Crucially, we show that our proposed ensembling also reduces sensitivity to low-level WA design choices, resulting in more robust XLT for token classification tasks.
♻ ☆ Topic Over Source: The Key to Effective Data Mixing for Language Models Pre-training
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various languages, sources, and topics. Effectively integrating these heterogeneous data groups is crucial for optimizing LLM performance. Previous research has predominantly concentrated on source-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a topic-based data mixing strategy that utilizes detailed topic labels generated through a multi-stage process combining unsupervised clustering, LLM-based summarization, and supervised classifier training. With this strategy, we conduct the first comprehensive comparison of topic-based versus source-based partitioning across multiple mixing strategies. We demonstrate that language models pretrained on data mixed by topics consistently outperform those trained on data mixed by sources across multiple methods including RegMix, DoReMi,temperature-based sampling, and a manual mixing method based on downstream task performance. Our theoretical analysis reveals that topic-based data achieves significantly lower validation loss compared to source-based approaches, creating a better optimization landscape for model training. We will make our code, annotated datasets, and topic classification models publicly available to facilitate further research.
♻ ☆ Can a Crow Hatch a Falcon? Lineage Matters in Predicting Large Language Model Performance
Accurately forecasting the performance of Large Language Models (LLMs) before extensive fine-tuning or merging can substantially reduce both computational expense and development time. Although prior approaches like scaling laws account for global factors such as parameter size or training tokens, they often overlook explicit lineage relationships-i.e., which models are derived or merged from which parents. In this work, we propose a novel Lineage-Regularized Matrix Factorization (LRMF) framework that encodes ancestral ties among LLMs via a graph Laplacian regularizer. By leveraging multi-hop parent-child connections, LRMF consistently outperforms conventional matrix factorization and collaborative filtering methods in both instance-level and benchmark-level performance prediction. Our large-scale study includes 2,934 publicly available Hugging Face models and 21,000+ instances across 6 major benchmarks, showing that the introduction of lineage constraints yields up to 0.15-0.30 higher Pearson correlation coefficients with actual performance compared to baseline methods. Moreover, LRMF effectively addresses the cold-start problem, providing accurate estimates for newly derived or merged models even with minimal data. This lineage-guided strategy thus offers a resource-efficient way to inform hyperparameter tuning, data selection, and model combination in modern LLM development.
♻ ☆ Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework
Extract-then-Abstract is a naturally coherent paradigm to conduct abstractive summarization with the help of salient information identified by the extractive model. Previous works that adopt this paradigm train the extractor and abstractor separately and introduce extra parameters to highlight the extracted salients to the abstractor, which results in error accumulation and additional training costs. In this paper, we first introduce a parameter-free highlight method into the encoder-decoder framework: replacing the encoder attention mask with a saliency mask in the cross-attention module to force the decoder to focus only on salient parts of the input. A preliminary analysis compares different highlight methods, demonstrating the effectiveness of our saliency mask. We further propose the novel extract-and-abstract paradigm, ExtAbs., which jointly and seamlessly performs Extractive and Abstractive summarization tasks within single encoder-decoder model to reduce error accumulation. In ExtAbs, the vanilla encoder is augmented to extract salients, and the vanilla decoder is modified with the proposed saliency mask to generate summaries. Built upon BART and PEGASUS, experiments on three datasets show that ExtAbs can achieve superior performance than baselines on the extractive task and performs comparable, or even better than the vanilla models on the abstractive task.
♻ ☆ CoAct-1: Computer-using Agents with Coding as Actions
Autonomous agents that operate computers via Graphical User Interfaces (GUIs) often struggle with efficiency and reliability on complex, long-horizon tasks. While augmenting these agents with planners can improve task decomposition, they remain constrained by the inherent limitations of performing all actions through GUI manipulation, leading to brittleness and inefficiency. In this work, we introduce a more robust and flexible paradigm: enabling agents to use coding as a enhanced action. We present CoAct-1, a novel multi-agent system that synergistically combines GUI-based control with direct programmatic execution. CoAct-1 features an Orchestrator that dynamically delegates subtasks to either a conventional GUI Operator or a specialized Programmer agent, which can write and execute Python or Bash scripts. This hybrid approach allows the agent to bypass inefficient GUI action sequences for tasks like file management and data processing, while still leveraging visual interaction when necessary. We evaluate our system on the challenging OSWorld benchmark, where CoAct-1 achieves a new state-of-the-art success rate of 60.76%, significantly outperforming prior methods. Furthermore, our approach dramatically improves efficiency, reducing the average number of steps required to complete a task to just 10.15, compared to 15 for leading GUI agents. Our results demonstrate that integrating coding as a core action provides a more powerful, efficient, and scalable path toward generalized computer automation.
♻ ☆ Decompositional Reasoning for Graph Retrieval with Large Language Models
Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
♻ ☆ Automated Privacy Information Annotation in Large Language Model Interactions
Users interacting with large language models (LLMs) under their real identifiers often unknowingly risk disclosing private information. Automatically notifying users whether their queries leak privacy and which phrases leak what private information has therefore become a practical need. Existing privacy detection methods, however, were designed for different objectives and application domains, typically tagging personally identifiable information (PII) in anonymous content, which is insufficient in real-name interaction scenarios with LLMs. In this work, to support the development and evaluation of privacy detection models for LLM interactions that are deployable on local user devices, we construct a large-scale multilingual dataset with 249K user queries and 154K annotated privacy phrases. In particular, we build an automated privacy annotation pipeline with strong LLMs to automatically extract privacy phrases from dialogue datasets and annotate leaked information. We also design evaluation metrics at the levels of privacy leakage, extracted privacy phrase, and privacy information. We further establish baseline methods using light-weight LLMs with both tuning-free and tuning-based methods, and report a comprehensive evaluation of their performance. Evaluation results reveal a gap between current performance and the requirements of real-world LLM applications, motivating future research into more effective local privacy detection methods grounded in our dataset.
comment: 8 content pages
♻ ☆ AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts, but this "overthinking" incurs high latency and cost without commensurate accuracy gains. In this work, we introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning that dynamically balances correctness and brevity during training. By incorporating validation accuracy into the reward and employing a smooth, dynamically scheduled length penalty, AALC delays length penalty until target performance is met. Through extensive experiments across standard and out-of-distribution math benchmarks, we show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy. Furthermore, qualitative analysis reveals that our method curbs redundant reasoning patterns such as excessive subgoal setting and verification, leading to structurally refined outputs rather than naive truncation. We also identify that efficiency gains are accompanied by reduced interpretability: models trained with AALC omit some narrative framing and explanatory context. These findings highlight the potential of reward-based strategies to guide LRMs toward more efficient, generalizable reasoning paths.
♻ ☆ Integrating large language models and active inference to understand eye movements in reading and dyslexia
We present a novel computational model employing hierarchical active inference to simulate reading and eye movements. The model characterizes linguistic processing as inference over a hierarchical generative model, facilitating predictions and inferences at various levels of granularity, from syllables to sentences. Our approach combines the strengths of large language models for realistic textual predictions and active inference for guiding eye movements to informative textual information, enabling the testing of predictions. The model exhibits proficiency in reading both known and unknown words and sentences, adhering to the distinction between lexical and nonlexical routes in dual route theories of reading. Our model therefore provides a novel approach to understand the cognitive processes underlying reading and eye movements, within a predictive processing framework. Furthermore, our model can potentially aid in understanding how maladaptive predictive processing can produce reading deficits associated with dyslexia. As a proof of concept, we show that attenuating the contribution of priors during the reading process leads to incorrect inferences and a more fragmented reading style, characterized by a greater number of shorter saccades, aligning with empirical findings regarding eye movements in dyslexic individuals. In summary, our model represents a significant advancement in comprehending the cognitive processes involved in reading and eye movements, with potential implications for understanding dyslexia in terms of maladaptive inference.
comment: Main Document - 30 pages, 1 Table, 10 Figures + Supplementary 16 pages, 17 Tables
♻ ☆ Nyay-Darpan: Enhancing Decision Making Through Summarization and Case Retrieval for Consumer Law in India
AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
♻ ☆ Reducibility among NP-Hard graph problems and boundary classes
Many NP-hard graph problems become easy for some classes of graphs. For example, coloring is easy for bipartite graphs, but NP-hard in general. So we can ask question like when does a hard problem become easy? What is the minimum substructure for which the problem remains hard? We use the notion of boundary classes to study such questions. In this paper, we introduce a method for transforming the boundary class of one NP-hard graph problem into a boundary class for another problem. If {\Pi} and {\Gamma} are two NP-hard graph problems where {\Pi} is reducible to {\Gamma}, we transform a boundary class of {\Pi} into a boundary class of {\Gamma}. More formally if {\Pi} is reducible to {\Gamma}, where the reduction satisfies certain conditions, then X is a boundary class of {\Pi} if and only if the image of X under the reduction is a boundary class of {\Gamma}. This gives us a relationship between boundary classes and reducibility among several NP-hard problems. To show the strength of our main result, we apply our theorem to obtain some previously unknown boundary classes for a few graph problems namely; vertex-cover, clique, traveling-salesperson, bounded-degree-spanning-tree, subgraph-isomorphism and clique-cover.
comment: 9 pages, 6 figures
♻ ☆ Towards More Realistic Extraction Attacks: An Adversarial Perspective ACL
Language models are prone to memorizing their training data, making them vulnerable to extraction attacks. While existing research often examines isolated setups, such as a single model or a fixed prompt, real-world adversaries have a considerably larger attack surface due to access to models across various sizes and checkpoints, and repeated prompting. In this paper, we revisit extraction attacks from an adversarial perspective -- with multi-faceted access to the underlying data. We find significant churn in extraction trends, i.e., even unintuitive changes to the prompt, or targeting smaller models and earlier checkpoints, can extract distinct information. By combining multiple attacks, our adversary doubles ($2 \times$) the extraction risks, persisting even under mitigation strategies like data deduplication. We conclude with four case studies, including detecting pre-training data, copyright violations, extracting personally identifiable information, and attacking closed-source models, showing how our more realistic adversary can outperform existing adversaries in the literature.
comment: To appear in TACL
♻ ☆ CUB: Benchmarking Context Utilisation Techniques for Language Models
Incorporating external knowledge is crucial for knowledge-intensive tasks, such as question answering and fact checking. However, language models (LMs) may ignore relevant information that contradicts outdated parametric memory or be distracted by irrelevant contexts. While many context utilisation manipulation techniques (CMTs) have recently been proposed to alleviate these issues, few have seen systematic comparison. In this paper, we develop CUB (Context Utilisation Benchmark) - the first comprehensive benchmark designed to help practitioners within retrieval-augmented generation (RAG) diagnose CMTs under different context conditions. With this benchmark, we conduct the most extensive evaluation to date of seven state-of-the-art methods, representative of the main categories of CMTs, across three diverse datasets and tasks, applied to nine LMs. Our results reveal that most existing CMTs struggle to handle the full spectrum of context types encountered in real-world retrieval-augmented scenarios. We also find that many CMTs display inflated performance on simple synthesised datasets, compared to more realistic datasets with naturally occurring samples. Our findings expose critical gaps in current CMT evaluation practices and demonstrate the need for holistic testing and the development of CMTs that can robustly handle multiple context types.
comment: 28 pages
♻ ☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/CodeARC
♻ ☆ Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models
Existing LLM reasoning methods have shown impressive capabilities across various tasks, such as solving math and coding problems. However, applying these methods to scenarios without ground-truth answers or rule-based verification methods - such as tracking the mental states of an agent - remains challenging. Inspired by the sequential Monte Carlo algorithm, we introduce thought-tracing, an inference-time reasoning algorithm designed to trace the mental states of specific agents by generating hypotheses and weighting them based on observations without relying on ground-truth solutions to questions in datasets. Our algorithm is modeled after the Bayesian theory-of-mind framework, using LLMs to approximate probabilistic inference over agents' evolving mental states based on their perceptions and actions. We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements compared to baseline LLMs. Our experiments also reveal interesting behaviors of the recent reasoning models - e.g., o3 and R1 - on theory-of-mind, highlighting the difference of social reasoning compared to other domains.
comment: COLM 2025. For code and data, see https://hyunw.kim/thought-tracing
♻ ☆ PaPaformer: Language Model from Pre-trained Parallel Paths
The training of modern large-language models requires an increasingly amount of computation power and time. Even smaller variants, such as small-language models (SLMs), take several days to train in the best-case scenarios, often requiring multiple GPUs. This paper explores methods to train and evaluate decoder-only transformer-based language models in hours instead of days/weeks. We introduces \textit{PaPaformer}, a decoder-only transformer architecture variant, whose lower-dimensional parallel paths are combined into larger model. The paper shows that these lower-dimensional paths can be trained individually with different types of training data and then combined into one larger model. This method gives the option to reduce the total number of model parameters and the training time with increasing performance. Moreover, the use of parallel path structure opens interesting possibilities to customize paths to accommodate specific task requirements.
♻ ☆ The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-an-annotator" and "LLM-as-a-judge" paradigms employ Large Language Models (LLMs) as annotators, judges, and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure, the Alternative Annotator Test (alt-test), that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM annotators and judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming the open-source LLMs we examine, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
♻ ☆ Context-Aware Hierarchical Merging for Long Document Summarization ACL 2025
Hierarchical Merging is a technique commonly used to summarize very long texts ($>$100K tokens) by breaking down the input into smaller sections, summarizing those sections individually, and then merging or combining those summaries into a final coherent summary. Although it helps address the limitations of large language models (LLMs) with fixed input length constraints, the recursive merging process can amplify LLM hallucinations, increasing the risk of factual inaccuracies. In this paper, we seek to mitigate hallucinations by enriching hierarchical merging with context from the source document. Specifically, we propose different approaches to contextual augmentation ranging from \emph{replacing} intermediate summaries with relevant input context, to \emph{refining} them while using the context as supporting evidence, and \emph{aligning} them implicitly (via citations) to the input. Experimental results on datasets representing legal and narrative domains show that contextual augmentation consistently outperforms zero-shot and hierarchical merging baselines for the Llama 3.1 model family. Our analysis further reveals that refinement methods tend to perform best when paired with extractive summarization for identifying relevant input.
comment: ACL 2025 Findings
♻ ☆ Layers at Similar Depths Generate Similar Activations Across LLM Architectures
How do the latent spaces used by independently-trained LLMs relate to one another? We study the nearest neighbor relationships induced by activations at different layers of 24 open-weight LLMs, and find that they 1) tend to vary from layer to layer within a model, and 2) are approximately shared between corresponding layers of different models. Claim 2 shows that these nearest neighbor relationships are not arbitrary, as they are shared across models, but Claim 1 shows that they are not "obvious" either, as there is no single set of nearest neighbor relationships that is universally shared. Together, these suggest that LLMs generate a progression of activation geometries from layer to layer, but that this entire progression is largely shared between models, stretched and squeezed to fit into different architectures.
♻ ☆ One ruler to measure them all: Benchmarking multilingual long-context language models
We present ONERULER, a multilingual benchmark designed to evaluate long-context language models across 26 languages. ONERULER adapts the English-only RULER benchmark (Hsieh et al., 2024) by including seven synthetic tasks that test both retrieval and aggregation, including new variations of the "needle-in-a-haystack" task that allow for the possibility of a nonexistent needle. We create ONERULER through a two-step process, first writing English instructions for each task and then collaborating with native speakers to translate them into 25 additional languages. Experiments with both open-weight and closed LLMs reveal a widening performance gap between low- and high-resource languages as context length increases from 8K to 128K tokens. Surprisingly, English is not the top-performing language on long-context tasks (ranked 6th out of 26), with Polish emerging as the top language. Our experiments also show that many LLMs (particularly OpenAI's o3-mini-high) incorrectly predict the absence of an answer, even in high-resource languages. Finally, in cross-lingual scenarios where instructions and context appear in different languages, performance can fluctuate by up to 20% depending on the instruction language. We hope the release of ONERULER will facilitate future research into improving multilingual and cross-lingual long-context training pipelines.
♻ ☆ Evaluation of LLMs in AMR Parsing
AMR (Abstract Meaning Representation) is a semantic formalism that encodes sentence meaning as rooted, directed, acyclic graphs, where nodes represent concepts and edges denote semantic relations. Finetuning decoder only Large Language Models (LLMs) represent a promising novel straightfoward direction for AMR parsing. This paper presents a comprehensive evaluation of finetuning four distinct LLM architectures, Phi 3.5, Gemma 2, LLaMA 3.2, and DeepSeek R1 LLaMA Distilled using the LDC2020T02 Gold AMR3.0 test set. Our results have shown that straightfoward finetuning of decoder only LLMs can achieve comparable performance to complex State of the Art (SOTA) AMR parsers. Notably, LLaMA 3.2 demonstrates competitive performance against SOTA AMR parsers given a straightforward finetuning approach. We achieved SMATCH F1: 0.804 on the full LDC2020T02 test split, on par with APT + Silver (IBM) at 0.804 and approaching Graphene Smatch (MBSE) at 0.854. Across our analysis, we also observed a consistent pattern where LLaMA 3.2 leads in semantic performance while Phi 3.5 excels in structural validity.
comment: 27 pages, 32 figures
♻ ☆ Pretraining on the Test Set Is No Longer All You Need: A Debate-Driven Approach to QA Benchmarks
As frontier language models increasingly saturate standard QA benchmarks, concerns about data contamination, memorization, and escalating dataset creation costs persist. We propose a debate-driven evaluation paradigm that transforms any existing QA dataset into structured adversarial debates--where one model is given the official answer to defend, and another constructs and defends an alternative answer--adjudicated by a judge model blind to the correct solution. By forcing multi-round argumentation, this approach substantially increases difficulty while penalizing shallow memorization, yet reuses QA items to reduce curation overhead. We make two main contributions: (1) an evaluation pipeline to systematically convert QA tasks into debate-based assessments, and (2) a public benchmark that demonstrates our paradigm's effectiveness on a subset of MMLU-Pro questions, complete with standardized protocols and reference models. Empirical results validate the robustness of the method and its effectiveness against data contamination--a Llama 3.1 model fine-tuned on test questions showed dramatic accuracy improvements (50% -> 82%) but performed worse in debates. Results also show that even weaker judges can reliably differentiate stronger debaters, highlighting how debate-based evaluation can scale to future, more capable systems while maintaining a fraction of the cost of creating new benchmarks. Overall, our framework underscores that "pretraining on the test set is no longer all you need," offering a sustainable path for measuring the genuine reasoning ability of advanced language models.
comment: 22 pages, 7 figures. Accepted to COLM 2025. Code available at: github.com/l6cao/Debate-Driven-Evaluation
♻ ☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
♻ ☆ EvidenceBench: A Benchmark for Extracting Evidence from Biomedical Papers
We study the task of automatically finding evidence relevant to hypotheses in biomedical papers. Finding relevant evidence is an important step when researchers investigate scientific hypotheses. We introduce EvidenceBench to measure models performance on this task, which is created by a novel pipeline that consists of hypothesis generation and sentence-by-sentence annotation of biomedical papers for relevant evidence, completely guided by and faithfully following existing human experts judgment. We demonstrate the pipeline's validity and accuracy with multiple sets of human-expert annotations. We evaluated a diverse set of language models and retrieval systems on the benchmark and found that model performances still fall significantly short of the expert level on this task. To show the scalability of our proposed pipeline, we create a larger EvidenceBench-100k with 107,461 fully annotated papers with hypotheses to facilitate model training and development. Both datasets are available at https://github.com/EvidenceBench/EvidenceBench
comment: Published at Conference on Language Modeling (COLM) 2025
♻ ☆ MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints
Large Language Models (LLMs) often exhibit cultural biases due to training data dominated by high-resource languages like English and Chinese. This poses challenges for accurately representing and evaluating diverse cultural contexts, particularly in low-resource language settings. To address this, we introduce MyCulture, a benchmark designed to comprehensively evaluate LLMs on Malaysian culture across six pillars: arts, attire, customs, entertainment, food, and religion presented in Bahasa Melayu. Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options, thereby reducing guessing and mitigating format bias. We provide a theoretical justification for the effectiveness of this open-ended structure in improving both fairness and discriminative power. Furthermore, we analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations. Our evaluation across a range of regional and international LLMs reveals significant disparities in cultural comprehension, highlighting the urgent need for culturally grounded and linguistically inclusive benchmarks in the development and assessment of LLMs.
♻ ☆ Language Agents Mirror Human Causal Reasoning Biases. How Can We Help Them Think Like Scientists?
Language model (LM) agents are increasingly used as autonomous decision-makers which need to actively gather information to guide their decisions. A crucial cognitive skill for such agents is the efficient exploration and understanding of the causal structure of the world -- key to robust, scientifically grounded reasoning. Yet, it remains unclear whether LMs possess this capability or exhibit systematic biases leading to erroneous conclusions. In this work, we examine LMs' ability to explore and infer causal relationships, using the well-established Blicket Test paradigm from developmental psychology. We find that LMs reliably infer the common, intuitive disjunctive causal relationships but systematically struggle with the unusual, yet equally (or sometimes even more) evidenced conjunctive ones. This "disjunctive bias" persists across model families, sizes, and prompting strategies, and performance further declines as task complexity increases. Interestingly, an analogous bias appears in human adults, suggesting that LMs may have inherited deep-seated reasoning heuristics from their training data. To this end, we quantify similarities between LMs and humans, finding that LMs exhibit adult-like inference profiles (but not child-like). Finally, we propose a test-time sampling method which explicitly samples and eliminates hypotheses about causal relationships from the LM. This scalable approach significantly reduces the disjunctive bias and moves LMs closer to the goal of scientific, causally rigorous reasoning.
comment: COLM 2025 Camera Ready
♻ ☆ Humans overrely on overconfident language models, across languages
As large language models (LLMs) are deployed globally, it is crucial that their responses are calibrated across languages to accurately convey uncertainty and limitations. Prior work shows that LLMs are linguistically overconfident in English, leading users to overrely on confident generations. However, the usage and interpretation of epistemic markers (e.g., 'I think it's') differs sharply across languages. Here, we study the risks of multilingual linguistic (mis)calibration, overconfidence, and overreliance across five languages to evaluate LLM safety in a global context. Our work finds that overreliance risks are high across languages. We first analyze the distribution of LLM-generated epistemic markers and observe that LLMs are overconfident across languages, frequently generating strengtheners even as part of incorrect responses. Model generations are, however, sensitive to documented cross-linguistic variation in usage: for example, models generate the most markers of uncertainty in Japanese and the most markers of certainty in German and Mandarin. Next, we measure human reliance rates across languages, finding that reliance behaviors differ cross-linguistically: for example, participants are significantly more likely to discount expressions of uncertainty in Japanese than in English (i.e., ignore their 'hedging' function and rely on generations that contain them). Taken together, these results indicate a high risk of reliance on overconfident model generations across languages. Our findings highlight the challenges of multilingual linguistic calibration and stress the importance of culturally and linguistically contextualized model safety evaluations.
comment: camera ready
Information Retrieval 22
☆ Maximum Impact with Fewer Features: Efficient Feature Selection for Cold-Start Recommenders through Collaborative Importance Weighting
Cold-start challenges in recommender systems necessitate leveraging auxiliary features beyond user-item interactions. However, the presence of irrelevant or noisy features can degrade predictive performance, whereas an excessive number of features increases computational demands, leading to higher memory consumption and prolonged training times. To address this, we propose a feature selection strategy that prioritizes the user behavioral information. Our method enhances the feature representation by incorporating correlations from collaborative behavior data using a hybrid matrix factorization technique and then ranks features using a mechanism based on the maximum volume algorithm. This approach identifies the most influential features, striking a balance between recommendation accuracy and computational efficiency. We conduct an extensive evaluation across various datasets and hybrid recommendation models, demonstrating that our method excels in cold-start scenarios by selecting minimal yet highly effective feature subsets. Even under strict feature reduction, our approach surpasses existing feature selection techniques while maintaining superior efficiency.
☆ eSASRec: Enhancing Transformer-based Recommendations in a Modular Fashion RecSys 2025
Since their introduction, Transformer-based models, such as SASRec and BERT4Rec, have become common baselines for sequential recommendations, surpassing earlier neural and non-neural methods. A number of following publications have shown that the effectiveness of these models can be improved by, for example, slightly updating the architecture of the Transformer layers, using better training objectives, and employing improved loss functions. However, the additivity of these modular improvements has not been systematically benchmarked - this is the gap we aim to close in this paper. Through our experiments, we identify a very strong model that uses SASRec's training objective, LiGR Transformer layers, and Sampled Softmax Loss. We call this combination eSASRec (Enhanced SASRec). While we primarily focus on realistic, production-like evaluation, in our preliminarily study we find that common academic benchmarks show eSASRec to be 23% more effective compared to the most recent state-of-the-art models, such as ActionPiece. In our main production-like benchmark, eSASRec resides on the Pareto frontier in terms of the accuracy-coverage tradeoff (alongside the recent industrial models HSTU and FuXi. As the modifications compared to the original SASRec are relatively straightforward and no extra features are needed (such as timestamps in HSTU), we believe that eSASRec can be easily integrated into existing recommendation pipelines and can can serve as a strong yet very simple baseline for emerging complicated algorithms. To facilitate this, we provide the open-source implementations for our models and benchmarks in repository https://github.com/blondered/transformer_benchmark
comment: Accepted at ACM RecSys 2025
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
☆ M2IO-R1: An Efficient RL-Enhanced Reasoning Framework for Multimodal Retrieval Augmented Multimodal Generation
Current research on Multimodal Retrieval-Augmented Generation (MRAG) enables diverse multimodal inputs but remains limited to single-modality outputs, restricting expressive capacity and practical utility. In contrast, real-world applications often demand both multimodal inputs and multimodal outputs for effective communication and grounded reasoning. Motivated by the recent success of Reinforcement Learning (RL) in complex reasoning tasks for Large Language Models (LLMs), we adopt RL as a principled and effective paradigm to address the multi-step, outcome-driven challenges inherent in multimodal output generation. Here, we introduce M2IO-R1, a novel framework for Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) that supports both multimodal inputs and outputs. Central to our framework is an RL-based inserter, Inserter-R1-3B, trained with Group Relative Policy Optimization to guide image selection and placement in a controllable and semantically aligned manner. Empirical results show that our lightweight 3B inserter achieves strong reasoning capabilities with significantly reduced latency, outperforming baselines in both quality and efficiency.
☆ Improving Table Retrieval with Question Generation from Partial Tables ACL2025
Recent advances in open-domain question answering over tables have widely adopted large language models (LLMs) under the Retriever-Reader architecture. Prior works have effectively leveraged LLMs to tackle the complex reasoning demands of the Reader component, such as text-to-text, text-to-SQL, and multi hop reasoning. In contrast, the Retriever component has primarily focused on optimizing the query representation-training retrievers to retrieve relevant tables based on questions, or to select keywords from questions for matching table segments. However, little attention has been given to enhancing how tables themselves are represented in embedding space to better align with questions. To address this, we propose QGpT (Question Generation from Partial Tables), a simple yet effective method that uses an LLM to generate synthetic questions based on small portions of a table. These questions are generated to simulate how a user might query the content of the table currently under consideration. The generated questions are then jointly embedded with the partial table segments used for generation, enhancing semantic alignment with user queries. Without the need to embed entire tables, our method significantly improves retrieval performance across multiple benchmarks for both dense and late-interaction retrievers.
comment: TRL@ACL2025
☆ Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
☆ Few-Shot Prompting for Extractive Quranic QA with Instruction-Tuned LLMs
This paper presents two effective approaches for Extractive Question Answering (QA) on the Quran. It addresses challenges related to complex language, unique terminology, and deep meaning in the text. The second uses few-shot prompting with instruction-tuned large language models such as Gemini and DeepSeek. A specialized Arabic prompt framework is developed for span extraction. A strong post-processing system integrates subword alignment, overlap suppression, and semantic filtering. This improves precision and reduces hallucinations. Evaluations show that large language models with Arabic instructions outperform traditional fine-tuned models. The best configuration achieves a pAP10 score of 0.637. The results confirm that prompt-based instruction tuning is effective for low-resource, semantically rich QA tasks.
comment: 6 pages , 2 figures , Accepted in IMSA 2025,Egypt , https://imsa.msa.edu.eg/
☆ When a Paper Has 1000 Authors: Rethinking Citation Metrics in the Era of LLMs
Author-level citation metrics provide a practical, interpretable, and scalable signal of scholarly influence in a complex research ecosystem. It has been widely used as a proxy in hiring decisions. However, the past five years have seen the rapid emergence of large-scale publications in the field of large language models and foundation models, with papers featuring hundreds to thousands of co-authors and receiving tens of thousands of citations within months. For example, Gemini has 1361 authors and has been cited around 4600 times in 19 months. In such cases, traditional metrics, such as total citation count and the $h$-index, fail to meaningfully distinguish individual contributions. Therefore, we propose the following research question: How can one identify standout researchers among thousands of co-authors in large-scale LLM papers? This question is particularly important in scenarios such as academic hiring and funding decisions. In this paper, we introduce a novel citation metric designed to address this challenge by balancing contributions across large-scale and small-scale publications. We propose the SBCI index, analyze its theoretical properties, and evaluate its behavior on synthetic publication datasets. Our results demonstrate that the proposed metric provides a more robust and discriminative assessment of individual scholarly impact in the era of large-scale collaborations.
☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts CIKM 2025
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025
☆ Dual prototype attentive graph network for cross-market recommendation ICONIP 2025
Cross-market recommender systems (CMRS) aim to utilize historical data from mature markets to promote multinational products in emerging markets. However, existing CMRS approaches often overlook the potential for shared preferences among users in different markets, focusing primarily on modeling specific preferences within each market. In this paper, we argue that incorporating both market-specific and market-shared insights can enhance the generalizability and robustness of CMRS. We propose a novel approach called Dual Prototype Attentive Graph Network for Cross-Market Recommendation (DGRE) to address this. DGRE leverages prototypes based on graph representation learning from both items and users to capture market-specific and market-shared insights. Specifically, DGRE incorporates market-shared prototypes by clustering users from various markets to identify behavioural similarities and create market-shared user profiles. Additionally, it constructs item-side prototypes by aggregating item features within each market, providing valuable market-specific insights. We conduct extensive experiments to validate the effectiveness of DGRE on a real-world cross-market dataset, and the results show that considering both market-specific and market-sharing aspects in modelling can improve the generalization and robustness of CMRS.
comment: Accepted by ICONIP 2025 (Oral)
☆ Formal Concept Analysis: a Structural Framework for Variability Extraction and Analysis
Formal Concept Analysis (FCA) is a mathematical framework for knowledge representation and discovery. It performs a hierarchical clustering over a set of objects described by attributes, resulting in conceptual structures in which objects are organized depending on the attributes they share. These conceptual structures naturally highlight commonalities and variabilities among similar objects by categorizing them into groups which are then arranged by similarity, making it particularly appropriate for variability extraction and analysis. Despite the potential of FCA, determining which of its properties can be leveraged for variability-related tasks (and how) is not always straightforward, partly due to the mathematical orientation of its foundational literature. This paper attempts to bridge part of this gap by gathering a selection of properties of the framework which are essential to variability analysis, and how they can be used to interpret diverse variability information within the resulting conceptual structures.
☆ BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent
Deep-Research agents, which integrate large language models (LLMs) with search tools, have shown success in improving the effectiveness of handling complex queries that require iterative search planning and reasoning over search results. Evaluations on current benchmarks like BrowseComp relies on black-box live web search APIs, have notable limitations in (1) fairness: dynamic and opaque web APIs hinder fair comparisons and reproducibility of deep research methods; (2) transparency: lack of control over the document corpus makes it difficult to isolate retriever contributions. In other words, the current evaluations may compare a complete deep research system at a given time, but they do not foster well-controlled experiments to provide insights into the capability of underlying deep research LLMs. To address these challenges, we introduce BrowseComp-Plus, a benchmark derived from BrowseComp, employing a fixed, carefully curated corpus. Each query in BrowseComp-Plus includes human-verified supporting documents and mined challenging negatives, enabling controlled experimentation. The benchmark is shown to be effective in distinguishing the performance of deep research systems. For instance, the open-source model Search-R1, when paired with the BM25 retriever, achieves 3.86% accuracy, whereas the GPT-5 achieves 55.9%. Integrating the GPT-5 with the Qwen3-Embedding-8B retriever further enhances its accuracy to 70.1% with fewer search calls. This benchmark allows comprehensive evaluation and disentangled analysis of deep research agents and retrieval methods, fostering insights into retrieval effectiveness, citation accuracy, and context engineering in Deep-Research system.
♻ ☆ Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
comment: Published at CoLM 2025
♻ ☆ Budgeted Embedding Table For Recommender Systems WSDM 2024
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024
♻ ☆ Decompositional Reasoning for Graph Retrieval with Large Language Models
Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ Nyay-Darpan: Enhancing Decision Making Through Summarization and Case Retrieval for Consumer Law in India
AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
♻ ☆ Federated Continual Recommendation CIKM 2025
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements KDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Harnessing Light for Cold-Start Recommendations: Leveraging Epistemic Uncertainty to Enhance Performance in User-Item Interactions CIKM 2025
Most recent paradigms of generative model-based recommendation still face challenges related to the cold-start problem. Existing models addressing cold item recommendations mainly focus on acquiring more knowledge to enrich embeddings or model inputs. However, many models do not assess the efficiency with which they utilize the available training knowledge, leading to the extraction of significant knowledge that is not fully used, thus limiting improvements in cold-start performance. To address this, we introduce the concept of epistemic uncertainty to indirectly define how efficiently a model uses the training knowledge. Since epistemic uncertainty represents the reducible part of the total uncertainty, we can optimize the recommendation model further based on epistemic uncertainty to improve its performance. To this end, we propose a Cold-Start Recommendation based on Epistemic Uncertainty (CREU) framework. Additionally, CREU is inspired by Pairwise-Distance Estimators (PaiDEs) to efficiently and accurately measure epistemic uncertainty by evaluating the mutual information between model outputs and weights in high-dimensional spaces. The proposed method is evaluated through extensive offline experiments on public datasets, which further demonstrate the advantages and robustness of CREU. The source code is available at https://github.com/EsiksonX/CREU.
comment: Accepted by CIKM 2025
♻ ☆ ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for solving question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in both accuracy and token cost.
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
♻ ☆ Community-Aware Social Community Recommendation CIKM 2025
Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
comment: This is the technical report of the paper "Community-Aware Social Community Recommendation" accepted by CIKM 2025
Computation and Language 136
☆ H-Net++: Hierarchical Dynamic Chunking for Tokenizer-Free Language Modelling in Morphologically-Rich Languages
Byte-level language models eliminate fragile tokenizers but face computational challenges in morphologically-rich languages (MRLs), where words span many bytes. We propose H-NET++, a hierarchical dynamic-chunking model that learns linguistically-informed segmentation through end-to-end training. Key innovations include: (1) a lightweight Transformer context-mixer (1.9M parameters) for cross-chunk attention, (2) a two-level latent hyper-prior for document-level consistency, (3) specialized handling of orthographic artifacts (e.g. Persian ZWNJ), and (4) curriculum-based training with staged sequence lengths. On a 1.4B-token Persian corpus, H-NET++ achieves state-of-the-art results: 0.159 BPB reduction versus BPE-based GPT-2-fa (12% better compression), 5.4pp gain on ParsGLUE, 53% improved robustness to ZWNJ corruption, and 73.8% F1 on gold morphological boundaries. Our learned chunks align with Persian morphology without explicit supervision, demonstrating that hierarchical dynamic chunking provides an effective tokenizer-free solution for MRLs while maintaining computational efficiency.
☆ How Do LLMs Persuade? Linear Probes Can Uncover Persuasion Dynamics in Multi-Turn Conversations
Large Language Models (LLMs) have started to demonstrate the ability to persuade humans, yet our understanding of how this dynamic transpires is limited. Recent work has used linear probes, lightweight tools for analyzing model representations, to study various LLM skills such as the ability to model user sentiment and political perspective. Motivated by this, we apply probes to study persuasion dynamics in natural, multi-turn conversations. We leverage insights from cognitive science to train probes on distinct aspects of persuasion: persuasion success, persuadee personality, and persuasion strategy. Despite their simplicity, we show that they capture various aspects of persuasion at both the sample and dataset levels. For instance, probes can identify the point in a conversation where the persuadee was persuaded or where persuasive success generally occurs across the entire dataset. We also show that in addition to being faster than expensive prompting-based approaches, probes can do just as well and even outperform prompting in some settings, such as when uncovering persuasion strategy. This suggests probes as a plausible avenue for studying other complex behaviours such as deception and manipulation, especially in multi-turn settings and large-scale dataset analysis where prompting-based methods would be computationally inefficient.
☆ Learning to Reason for Factuality
Reasoning Large Language Models (R-LLMs) have significantly advanced complex reasoning tasks but often struggle with factuality, generating substantially more hallucinations than their non-reasoning counterparts on long-form factuality benchmarks. However, extending online Reinforcement Learning (RL), a key component in recent R-LLM advancements, to the long-form factuality setting poses several unique challenges due to the lack of reliable verification methods. Previous work has utilized automatic factuality evaluation frameworks such as FActScore to curate preference data in the offline RL setting, yet we find that directly leveraging such methods as the reward in online RL leads to reward hacking in multiple ways, such as producing less detailed or relevant responses. We propose a novel reward function that simultaneously considers the factual precision, response detail level, and answer relevance, and applies online RL to learn high quality factual reasoning. Evaluated on six long-form factuality benchmarks, our factual reasoning model achieves an average reduction of 23.1 percentage points in hallucination rate, a 23% increase in answer detail level, and no degradation in the overall response helpfulness.
☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.
comment: Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
☆ OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
Large language models excel at abstract reasoning but their capacity for embodied agent reasoning remains largely unexplored. We present OmniEAR, a comprehensive framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks. Unlike existing benchmarks that provide predefined tool sets or explicit collaboration directives, OmniEAR requires agents to dynamically acquire capabilities and autonomously determine coordination strategies based on task demands. Through text-based environment representation, we model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains. Our systematic evaluation reveals severe performance degradation when models must reason from constraints: while achieving 85-96% success with explicit instructions, performance drops to 56-85% for tool reasoning and 63-85% for implicit collaboration, with compound tasks showing over 50% failure rates. Surprisingly, complete environmental information degrades coordination performance, indicating models cannot filter task-relevant constraints. Fine-tuning improves single-agent tasks dramatically (0.6% to 76.3%) but yields minimal multi-agent gains (1.5% to 5.5%), exposing fundamental architectural limitations. These findings demonstrate that embodied reasoning poses fundamentally different challenges than current models can address, establishing OmniEAR as a rigorous benchmark for evaluating and advancing embodied AI systems. Our code and data are included in the supplementary materials and will be open-sourced upon acceptance.
comment: Project Page: https://zju-real.github.io/OmniEmbodied Code: https://github.com/ZJU-REAL/OmniEmbodied
☆ Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.
comment: Project Page: https://zju-real.github.io/cooper Code: https://github.com/zju-real/cooper
☆ Uni-cot: Towards Unified Chain-of-Thought Reasoning Across Text and Vision
Chain-of-Thought (CoT) reasoning has been widely adopted to enhance Large Language Models (LLMs) by decomposing complex tasks into simpler, sequential subtasks. However, extending CoT to vision-language reasoning tasks remains challenging, as it often requires interpreting transitions of visual states to support reasoning. Existing methods often struggle with this due to limited capacity of modeling visual state transitions or incoherent visual trajectories caused by fragmented architectures. To overcome these limitations, we propose Uni-CoT, a Unified Chain-of-Thought framework that enables coherent and grounded multimodal reasoning within a single unified model. The key idea is to leverage a model capable of both image understanding and generation to reason over visual content and model evolving visual states. However, empowering a unified model to achieve that is non-trivial, given the high computational cost and the burden of training. To address this, Uni-CoT introduces a novel two-level reasoning paradigm: A Macro-Level CoT for high-level task planning and A Micro-Level CoT for subtask execution. This design significantly reduces the computational overhead. Furthermore, we introduce a structured training paradigm that combines interleaved image-text supervision for macro-level CoT with multi-task objectives for micro-level CoT. Together, these innovations allow Uni-CoT to perform scalable and coherent multi-modal reasoning. Furthermore, thanks to our design, all experiments can be efficiently completed using only 8 A100 GPUs with 80GB VRAM each. Experimental results on reasoning-driven image generation benchmark (WISE) and editing benchmarks (RISE and KRIS) indicates that Uni-CoT demonstrates SOTA performance and strong generalization, establishing Uni-CoT as a promising solution for multi-modal reasoning. Project Page and Code: https://sais-fuxi.github.io/projects/uni-cot/
comment: https://sais-fuxi.github.io/projects/uni-cot/
☆ MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy
Large language models have achieved substantial progress in mathematical reasoning, yet their advancement is limited by the scarcity of high-quality, high-difficulty training data. Existing synthesis methods largely rely on transforming human-written templates, limiting both diversity and scalability. We propose MathSmith, a novel framework for synthesizing challenging mathematical problems to enhance LLM reasoning. Rather than modifying existing problems, MathSmith constructs new ones from scratch by randomly sampling concept-explanation pairs from PlanetMath, ensuring data independence and avoiding contamination. To increase difficulty, we design nine predefined strategies as soft constraints during rationales. We further adopts reinforcement learning to jointly optimize structural validity, reasoning complexity, and answer consistency. The length of the reasoning trace generated under autoregressive prompting is used to reflect cognitive complexity, encouraging the creation of more demanding problems aligned with long-chain-of-thought reasoning. Experiments across five benchmarks, categorized as easy & medium (GSM8K, MATH-500) and hard (AIME2024, AIME2025, OlympiadBench), show that MathSmith consistently outperforms existing baselines under both short and long CoT settings. Additionally, a weakness-focused variant generation module enables targeted improvement on specific concepts. Overall, MathSmith exhibits strong scalability, generalization, and transferability, highlighting the promise of high-difficulty synthetic data in advancing LLM reasoning capabilities.
☆ Iterative Learning of Computable Phenotypes for Treatment Resistant Hypertension using Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities for medical question answering and programming, but their potential for generating interpretable computable phenotypes (CPs) is under-explored. In this work, we investigate whether LLMs can generate accurate and concise CPs for six clinical phenotypes of varying complexity, which could be leveraged to enable scalable clinical decision support to improve care for patients with hypertension. In addition to evaluating zero-short performance, we propose and test a synthesize, execute, debug, instruct strategy that uses LLMs to generate and iteratively refine CPs using data-driven feedback. Our results show that LLMs, coupled with iterative learning, can generate interpretable and reasonably accurate programs that approach the performance of state-of-the-art ML methods while requiring significantly fewer training examples.
comment: To appear in PMLR, Volume 298, Machine Learning for Healthcare, 2025
☆ Fairy$\pm i$: the First 2-bit Complex LLM with All Parameters in $\{\pm1, \pm i\}$
Quantization-Aware Training (QAT) integrates quantization into the training loop, enabling LLMs to learn robust low-bit representations, and is widely recognized as one of the most promising research directions. All current QAT research focuses on minimizing quantization error on full-precision models, where the full-precision accuracy acts as an upper bound (accuracy ceiling). No existing method has even attempted to surpass this ceiling. To break this ceiling, we propose a new paradigm: raising the ceiling (full-precision model), and then still quantizing it efficiently into 2 bits. We propose Fairy$\pm i$, the first 2-bit quantization framework for complex-valued LLMs. Specifically, our method leverages the representational advantages of the complex domain to boost full-precision accuracy. We map weights to the fourth roots of unity $\{\pm1, \pm i\}$, forming a perfectly symmetric and information-theoretically optimal 2-bit representation. Importantly, each quantized weight has either a zero real or imaginary part, enabling multiplication-free inference using only additions and element swaps. Experimental results show that Fairy$\pm i$ outperforms the ceiling of existing 2-bit quantization approaches in terms of both PPL and downstream tasks, while maintaining strict storage and compute efficiency. This work opens a new direction for building highly accurate and practical LLMs under extremely low-bit constraints.
comment: 13 pages, 14 figures
☆ SPGISpeech 2.0: Transcribed multi-speaker financial audio for speaker-tagged transcription
We introduce SPGISpeech 2.0, a dataset suitable for speaker-tagged transcription in the financial domain. SPGISpeech 2.0 improves the diversity of applicable modeling tasks while maintaining the core characteristic of the original SPGISpeech dataset: audio snippets and their corresponding fully formatted text transcriptions, usable for end-to-end automatic speech recognition (ASR). SPGISpeech 2.0 consists of 3,780 additional hours of professionally transcribed earnings calls. Furthermore, the dataset contains call and speaker information for each audio snippet facilitating multi-talker ASR. We validate the utility of SPGISpeech 2.0 through improvements in speaker-tagged ASR performance of popular speech recognition models after fine-tuning on SPGISpeech 2.0. Released free for non-commercial use, we expect SPGISpeech 2.0 to foster advancements in speech recognition technologies and inspire a wide range of research applications.
comment: To be presented at Interspeech 2025
☆ Do Political Opinions Transfer Between Western Languages? An Analysis of Unaligned and Aligned Multilingual LLMs
Public opinion surveys show cross-cultural differences in political opinions between socio-cultural contexts. However, there is no clear evidence whether these differences translate to cross-lingual differences in multilingual large language models (MLLMs). We analyze whether opinions transfer between languages or whether there are separate opinions for each language in MLLMs of various sizes across five Western languages. We evaluate MLLMs' opinions by prompting them to report their (dis)agreement with political statements from voting advice applications. To better understand the interaction between languages in the models, we evaluate them both before and after aligning them with more left or right views using direct preference optimization and English alignment data only. Our findings reveal that unaligned models show only very few significant cross-lingual differences in the political opinions they reflect. The political alignment shifts opinions almost uniformly across all five languages. We conclude that in Western language contexts, political opinions transfer between languages, demonstrating the challenges in achieving explicit socio-linguistic, cultural, and political alignment of MLLMs.
☆ Conformal Sets in Multiple-Choice Question Answering under Black-Box Settings with Provable Coverage Guarantees
Large Language Models (LLMs) have shown remarkable progress in multiple-choice question answering (MCQA), but their inherent unreliability, such as hallucination and overconfidence, limits their application in high-risk domains. To address this, we propose a frequency-based uncertainty quantification method under black-box settings, leveraging conformal prediction (CP) to ensure provable coverage guarantees. Our approach involves multiple independent samplings of the model's output distribution for each input, with the most frequent sample serving as a reference to calculate predictive entropy (PE). Experimental evaluations across six LLMs and four datasets (MedMCQA, MedQA, MMLU, MMLU-Pro) demonstrate that frequency-based PE outperforms logit-based PE in distinguishing between correct and incorrect predictions, as measured by AUROC. Furthermore, the method effectively controls the empirical miscoverage rate under user-specified risk levels, validating that sampling frequency can serve as a viable substitute for logit-based probabilities in black-box scenarios. This work provides a distribution-free model-agnostic framework for reliable uncertainty quantification in MCQA with guaranteed coverage, enhancing the trustworthiness of LLMs in practical applications.
comment: under review
☆ Mixed-Initiative Dialog for Human-Robot Collaborative Manipulation
Effective robotic systems for long-horizon human-robot collaboration must adapt to a wide range of human partners, whose physical behavior, willingness to assist, and understanding of the robot's capabilities may change over time. This demands a tightly coupled communication loop that grants both agents the flexibility to propose, accept, or decline requests as they coordinate toward completing the task effectively. We apply a Mixed-Initiative dialog paradigm to Collaborative human-roBot teaming and propose MICoBot, a system that handles the common scenario where both agents, using natural language, take initiative in formulating, accepting, or rejecting proposals on who can best complete different steps of a task. To handle diverse, task-directed dialog, and find successful collaborative strategies that minimize human effort, MICoBot makes decisions at three levels: (1) a meta-planner considers human dialog to formulate and code a high-level collaboration strategy, (2) a planner optimally allocates the remaining steps to either agent based on the robot's capabilities (measured by a simulation-pretrained affordance model) and the human's estimated availability to help, and (3) an action executor decides the low-level actions to perform or words to say to the human. Our extensive evaluations in simulation and real-world -- on a physical robot with 18 unique human participants over 27 hours -- demonstrate the ability of our method to effectively collaborate with diverse human users, yielding significantly improved task success and user experience than a pure LLM baseline and other agent allocation models. See additional videos and materials at https://robin-lab.cs.utexas.edu/MicoBot/.
comment: Project website at https://robin-lab.cs.utexas.edu/MicoBot/
☆ CoCoLex: Confidence-guided Copy-based Decoding for Grounded Legal Text Generation ACL 2025
Due to their ability to process long and complex contexts, LLMs can offer key benefits to the Legal domain, but their adoption has been hindered by their tendency to generate unfaithful, ungrounded, or hallucinatory outputs. While Retrieval-Augmented Generation offers a promising solution by grounding generations in external knowledge, it offers no guarantee that the provided context will be effectively integrated. To address this, context-aware decoding strategies have been proposed to amplify the influence of relevant context, but they usually do not explicitly enforce faithfulness to the context. In this work, we introduce Confidence-guided Copy-based Decoding for Legal Text Generation (CoCoLex)-a decoding strategy that dynamically interpolates the model produced vocabulary distribution with a distribution derived based on copying from the context. CoCoLex encourages direct copying based on the model's confidence, ensuring greater fidelity to the source. Experimental results on five legal benchmarks demonstrate that CoCoLex outperforms existing context-aware decoding methods, particularly in long-form generation tasks.
comment: Accepted to ACL 2025-Main Conference
☆ The World According to LLMs: How Geographic Origin Influences LLMs' Entity Deduction Capabilities
Large Language Models (LLMs) have been extensively tuned to mitigate explicit biases, yet they often exhibit subtle implicit biases rooted in their pre-training data. Rather than directly probing LLMs with human-crafted questions that may trigger guardrails, we propose studying how models behave when they proactively ask questions themselves. The 20 Questions game, a multi-turn deduction task, serves as an ideal testbed for this purpose. We systematically evaluate geographic performance disparities in entity deduction using a new dataset, Geo20Q+, consisting of both notable people and culturally significant objects (e.g., foods, landmarks, animals) from diverse regions. We test popular LLMs across two gameplay configurations (canonical 20-question and unlimited turns) and in seven languages (English, Hindi, Mandarin, Japanese, French, Spanish, and Turkish). Our results reveal geographic disparities: LLMs are substantially more successful at deducing entities from the Global North than the Global South, and the Global West than the Global East. While Wikipedia pageviews and pre-training corpus frequency correlate mildly with performance, they fail to fully explain these disparities. Notably, the language in which the game is played has minimal impact on performance gaps. These findings demonstrate the value of creative, free-form evaluation frameworks for uncovering subtle biases in LLMs that remain hidden in standard prompting setups. By analyzing how models initiate and pursue reasoning goals over multiple turns, we find geographic and cultural disparities embedded in their reasoning processes. We release the dataset (Geo20Q+) and code at https://sites.google.com/view/llmbias20q/home.
comment: Conference on Language Modeling 2025
☆ LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from \textit{Discours de la m\'ethode}, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
☆ MELLA: Bridging Linguistic Capability and Cultural Groundedness for Low-Resource Language MLLMs
Multimodal Large Language Models (MLLMs) have shown remarkable performance in high-resource languages. However, their effectiveness diminishes significantly in the contexts of low-resource languages. Current multilingual enhancement methods are often limited to text modality or rely solely on machine translation. While such approaches help models acquire basic linguistic capabilities and produce "thin descriptions", they neglect the importance of multimodal informativeness and cultural groundedness, both of which are crucial for serving low-resource language users effectively. To bridge this gap, in this study, we identify two significant objectives for a truly effective MLLM in low-resource language settings, namely 1) linguistic capability and 2) cultural groundedness, placing special emphasis on cultural awareness. To achieve these dual objectives, we propose a dual-source strategy that guides the collection of data tailored to each goal, sourcing native web alt-text for culture and MLLM-generated captions for linguistics. As a concrete implementation, we introduce MELLA, a multimodal, multilingual dataset. Experiment results show that after fine-tuning on MELLA, there is a general performance improvement for the eight languages on various MLLM backbones, with models producing "thick descriptions". We verify that the performance gains are from both cultural knowledge enhancement and linguistic capability enhancement. Our dataset can be found at https://opendatalab.com/applyMultilingualCorpus.
☆ Can Large Language Models Generate Effective Datasets for Emotion Recognition in Conversations?
Emotion recognition in conversations (ERC) focuses on identifying emotion shifts within interactions, representing a significant step toward advancing machine intelligence. However, ERC data remains scarce, and existing datasets face numerous challenges due to their highly biased sources and the inherent subjectivity of soft labels. Even though Large Language Models (LLMs) have demonstrated their quality in many affective tasks, they are typically expensive to train, and their application to ERC tasks--particularly in data generation--remains limited. To address these challenges, we employ a small, resource-efficient, and general-purpose LLM to synthesize ERC datasets with diverse properties, supplementing the three most widely used ERC benchmarks. We generate six novel datasets, with two tailored to enhance each benchmark. We evaluate the utility of these datasets to (1) supplement existing datasets for ERC classification, and (2) analyze the effects of label imbalance in ERC. Our experimental results indicate that ERC classifier models trained on the generated datasets exhibit strong robustness and consistently achieve statistically significant performance improvements on existing ERC benchmarks.
comment: 8 pages, 4 figures
☆ Rethinking Creativity Evaluation: A Critical Analysis of Existing Creativity Evaluations
We systematically examine, analyze, and compare representative creativity measures--creativity index, perplexity, syntactic templates, and LLM-as-a-Judge--across diverse creative domains, including creative writing, unconventional problem-solving, and research ideation. Our analyses reveal that these metrics exhibit limited consistency, capturing different dimensions of creativity. We highlight key limitations, including the creativity index's focus on lexical diversity, perplexity's sensitivity to model confidence, and syntactic templates' inability to capture conceptual creativity. Additionally, LLM-as-a-Judge shows instability and bias. Our findings underscore the need for more robust, generalizable evaluation frameworks that better align with human judgments of creativity.
comment: 15 pages, 6 figures
☆ TASE: Token Awareness and Structured Evaluation for Multilingual Language Models
While large language models (LLMs) have demonstrated remarkable performance on high-level semantic tasks, they often struggle with fine-grained, token-level understanding and structural reasoning--capabilities that are essential for applications requiring precision and control. We introduce TASE, a comprehensive benchmark designed to evaluate LLMs' ability to perceive and reason about token-level information across languages. TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean, with a 35,927-instance evaluation set and a scalable synthetic data generation pipeline for training. Tasks include character counting, token alignment, syntactic structure parsing, and length constraint satisfaction. We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1, and train a custom Qwen2.5-14B model using the GRPO training method. Results show that human performance significantly outpaces current LLMs, revealing persistent weaknesses in token-level reasoning. TASE sheds light on these limitations and provides a new diagnostic lens for future improvements in low-level language understanding and cross-lingual generalization. Our code and dataset are publicly available at https://github.com/cyzcz/Tase .
☆ Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance?
The rapid advancement of General Purpose AI (GPAI) models necessitates robust evaluation frameworks, especially with emerging regulations like the EU AI Act and its associated Code of Practice (CoP). Current AI evaluation practices depend heavily on established benchmarks, but these tools were not designed to measure the systemic risks that are the focus of the new regulatory landscape. This research addresses the urgent need to quantify this "benchmark-regulation gap." We introduce Bench-2-CoP, a novel, systematic framework that uses validated LLM-as-judge analysis to map the coverage of 194,955 questions from widely-used benchmarks against the EU AI Act's taxonomy of model capabilities and propensities. Our findings reveal a profound misalignment: the evaluation ecosystem is overwhelmingly focused on a narrow set of behavioral propensities, such as "Tendency to hallucinate" (53.7% of the corpus) and "Discriminatory bias" (28.9%), while critical functional capabilities are dangerously neglected. Crucially, capabilities central to loss-of-control scenarios, including evading human oversight, self-replication, and autonomous AI development, receive zero coverage in the entire benchmark corpus. This translates to a near-total evaluation gap for systemic risks like "Loss of Control" (0.4% coverage) and "Cyber Offence" (0.8% coverage). This study provides the first comprehensive, quantitative analysis of this gap, offering critical insights for policymakers to refine the CoP and for developers to build the next generation of evaluation tools, ultimately fostering safer and more compliant AI.
LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
☆ MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints
Large Language Models (LLMs) often exhibit cultural biases due to training data dominated by high-resource languages like English and Chinese. This poses challenges for accurately representing and evaluating diverse cultural contexts, particularly in low-resource language settings. To address this, we introduce MyCulture, a benchmark designed to comprehensively evaluate LLMs on Malaysian culture across six pillars: arts, attire, customs, entertainment, food, and religion presented in Bahasa Melayu. Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options, thereby reducing guessing and mitigating format bias. We provide a theoretical justification for the effectiveness of this open-ended structure in improving both fairness and discriminative power. Furthermore, we analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations. Our evaluation across a range of regional and international LLMs reveals significant disparities in cultural comprehension, highlighting the urgent need for culturally grounded and linguistically inclusive benchmarks in the development and assessment of LLMs.
☆ The TUB Sign Language Corpus Collection
We present a collection of parallel corpora of 12 sign languages in video format, together with subtitles in the dominant spoken languages of the corresponding countries. The entire collection includes more than 1,300 hours in 4,381 video files, accompanied by 1,3~M subtitles containing 14~M tokens. Most notably, it includes the first consistent parallel corpora for 8 Latin American sign languages, whereas the size of the German Sign Language corpora is ten times the size of the previously available corpora. The collection was created by collecting and processing videos of multiple sign languages from various online sources, mainly broadcast material of news shows, governmental bodies and educational channels. The preparation involved several stages, including data collection, informing the content creators and seeking usage approvals, scraping, and cropping. The paper provides statistics on the collection and an overview of the methods used to collect the data.
☆ Can Language Models Critique Themselves? Investigating Self-Feedback for Retrieval Augmented Generation at BioASQ 2025
Agentic Retrieval Augmented Generation (RAG) and 'deep research' systems aim to enable autonomous search processes where Large Language Models (LLMs) iteratively refine outputs. However, applying these systems to domain-specific professional search, such as biomedical research, presents challenges, as automated systems may reduce user involvement and misalign with expert information needs. Professional search tasks often demand high levels of user expertise and transparency. The BioASQ CLEF 2025 challenge, using expert-formulated questions, can serve as a platform to study these issues. We explored the performance of current reasoning and nonreasoning LLMs like Gemini-Flash 2.0, o3-mini, o4-mini and DeepSeek-R1. A key aspect of our methodology was a self-feedback mechanism where LLMs generated, evaluated, and then refined their outputs for query expansion and for multiple answer types (yes/no, factoid, list, ideal). We investigated whether this iterative self-correction improves performance and if reasoning models are more capable of generating useful feedback. Preliminary results indicate varied performance for the self-feedback strategy across models and tasks. This work offers insights into LLM self-correction and informs future work on comparing the effectiveness of LLM-generated feedback with direct human expert input in these search systems.
comment: Version as accepted at the BioASQ Lab at CLEF 2025
☆ Evaluation of a Sign Language Avatar on Comprehensibility, User Experience \& Acceptability
This paper presents an investigation into the impact of adding adjustment features to an existing sign language (SL) avatar on a Microsoft Hololens 2 device. Through a detailed analysis of interactions of expert German Sign Language (DGS) users with both adjustable and non-adjustable avatars in a specific use case, this study identifies the key factors influencing the comprehensibility, the user experience (UX), and the acceptability of such a system. Despite user preference for adjustable settings, no significant improvements in UX or comprehensibility were observed, which remained at low levels, amid missing SL elements (mouthings and facial expressions) and implementation issues (indistinct hand shapes, lack of feedback and menu positioning). Hedonic quality was rated higher than pragmatic quality, indicating that users found the system more emotionally or aesthetically pleasing than functionally useful. Stress levels were higher for the adjustable avatar, reflecting lower performance, greater effort and more frustration. Additionally, concerns were raised about whether the Hololens adjustment gestures are intuitive and easy to familiarise oneself with. While acceptability of the concept of adjustability was generally positive, it was strongly dependent on usability and animation quality. This study highlights that personalisation alone is insufficient, and that SL avatars must be comprehensible by default. Key recommendations include enhancing mouthing and facial animation, improving interaction interfaces, and applying participatory design.
☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Technical Report
☆ A Novel Architecture for Symbolic Reasoning with Decision Trees and LLM Agents
We propose a hybrid architecture that integrates decision tree-based symbolic reasoning with the generative capabilities of large language models (LLMs) within a coordinated multi-agent framework. Unlike prior approaches that loosely couple symbolic and neural modules, our design embeds decision trees and random forests as callable oracles within a unified reasoning system. Tree-based modules enable interpretable rule inference and causal logic, while LLM agents handle abductive reasoning, generalization, and interactive planning. A central orchestrator maintains belief state consistency and mediates communication across agents and external tools, enabling reasoning over both structured and unstructured inputs. The system achieves strong performance on reasoning benchmarks. On \textit{ProofWriter}, it improves entailment consistency by +7.2\% through logic-grounded tree validation. On GSM8k, it achieves +5.3\% accuracy gains in multistep mathematical problems via symbolic augmentation. On \textit{ARC}, it boosts abstraction accuracy by +6.0\% through integration of symbolic oracles. Applications in clinical decision support and scientific discovery show how the system encodes domain rules symbolically while leveraging LLMs for contextual inference and hypothesis generation. This architecture offers a robust, interpretable, and extensible solution for general-purpose neuro-symbolic reasoning.
☆ SONAR-LLM: Autoregressive Transformer that Thinks in Sentence Embeddings and Speaks in Tokens
The recently proposed Large Concept Model (LCM) generates text by predicting a sequence of sentence-level embeddings and training with either mean-squared error or diffusion objectives. We present SONAR-LLM, a decoder-only transformer that "thinks" in the same continuous SONAR embedding space, yet is supervised through token-level cross-entropy propagated via the frozen SONAR decoder. This hybrid objective retains the semantic abstraction of LCM while eliminating its diffusion sampler and restoring a likelihood-based training signal. Across model sizes from 39M to 1.3B parameters, SONAR-LLM attains competitive generation quality. We report scaling trends, ablations, benchmark results, and release the complete training code and all pretrained checkpoints to foster reproducibility and future research.
☆ Decision-Making with Deliberation: Meta-reviewing as a Document-grounded Dialogue
Meta-reviewing is a pivotal stage in the peer-review process, serving as the final step in determining whether a paper is recommended for acceptance. Prior research on meta-reviewing has treated this as a summarization problem over review reports. However, complementary to this perspective, meta-reviewing is a decision-making process that requires weighing reviewer arguments and placing them within a broader context. Prior research has demonstrated that decision-makers can be effectively assisted in such scenarios via dialogue agents. In line with this framing, we explore the practical challenges for realizing dialog agents that can effectively assist meta-reviewers. Concretely, we first address the issue of data scarcity for training dialogue agents by generating synthetic data using Large Language Models (LLMs) based on a self-refinement strategy to improve the relevance of these dialogues to expert domains. Our experiments demonstrate that this method produces higher-quality synthetic data and can serve as a valuable resource towards training meta-reviewing assistants. Subsequently, we utilize this data to train dialogue agents tailored for meta-reviewing and find that these agents outperform \emph{off-the-shelf} LLM-based assistants for this task. Finally, we apply our agents in real-world meta-reviewing scenarios and confirm their effectiveness in enhancing the efficiency of meta-reviewing.\footnote{Code and Data: https://github.com/UKPLab/arxiv2025-meta-review-as-dialog
comment: 36 pages, 16 tables, 13 figures
☆ ASCoT: An Adaptive Self-Correction Chain-of-Thought Method for Late-Stage Fragility in LLMs
Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capabilities of Large Language Models (LLMs), yet the reliability of these reasoning chains remains a critical challenge. A widely held "cascading failure" hypothesis suggests that errors are most detrimental when they occur early in the reasoning process. This paper challenges that assumption through systematic error-injection experiments, revealing a counter-intuitive phenomenon we term "Late-Stage Fragility": errors introduced in the later stages of a CoT chain are significantly more likely to corrupt the final answer than identical errors made at the beginning. To address this specific vulnerability, we introduce the Adaptive Self-Correction Chain-of-Thought (ASCoT) method. ASCoT employs a modular pipeline in which an Adaptive Verification Manager (AVM) operates first, followed by the Multi-Perspective Self-Correction Engine (MSCE). The AVM leverages a Positional Impact Score function I(k) that assigns different weights based on the position within the reasoning chains, addressing the Late-Stage Fragility issue by identifying and prioritizing high-risk, late-stage steps. Once these critical steps are identified, the MSCE applies robust, dual-path correction specifically to the failure parts. Extensive experiments on benchmarks such as GSM8K and MATH demonstrate that ASCoT achieves outstanding accuracy, outperforming strong baselines, including standard CoT. Our work underscores the importance of diagnosing specific failure modes in LLM reasoning and advocates for a shift from uniform verification strategies to adaptive, vulnerability-aware correction mechanisms.
☆ Understanding and Mitigating Errors of LLM-Generated RTL Code
Despite the promising potential of large language model (LLM) based register-transfer-level (RTL) code generation, the overall success rate remains unsatisfactory. Errors arise from various factors, with limited understanding of specific failure causes hindering improvement. To address this, we conduct a comprehensive error analysis and manual categorization. Our findings reveal that most errors stem not from LLM reasoning limitations, but from insufficient RTL programming knowledge, poor understanding of circuit concepts, ambiguous design descriptions, or misinterpretation of complex multimodal inputs. Leveraging in-context learning, we propose targeted error correction techniques. Specifically, we construct a domain-specific knowledge base and employ retrieval-augmented generation (RAG) to supply necessary RTL knowledge. To mitigate ambiguity errors, we introduce design description rules and implement a rule-checking mechanism. For multimodal misinterpretation, we integrate external tools to convert inputs into LLM-compatible meta-formats. For remaining errors, we adopt an iterative debugging loop (simulation-error localization-correction). Integrating these techniques into an LLM-based framework significantly improves performance. We incorporate these error correction techniques into a foundational LLM-based RTL code generation framework, resulting in significantly improved performance. Experimental results show that our enhanced framework achieves 91.0\% accuracy on the VerilogEval benchmark, surpassing the baseline code generation approach by 32.7\%, demonstrating the effectiveness of our methods.
comment: 14 pages, 26 figures
☆ CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.
comment: Technical report. Project page: https://github.com/sijieaaa/CodeBoost
☆ Pruning Large Language Models by Identifying and Preserving Functional Networks
Structured pruning is one of the representative techniques for compressing large language models (LLMs) to reduce GPU memory consumption and accelerate inference speed. It offers significant practical value in improving the efficiency of LLMs in real-world applications. Current structured pruning methods typically rely on assessment of the importance of the structure units and pruning the units with less importance. Most of them overlooks the interaction and collaboration among artificial neurons that are crucial for the functionalities of LLMs, leading to a disruption in the macro functional architecture of LLMs and consequently a pruning performance degradation. Inspired by the inherent similarities between artificial neural networks and functional neural networks in the human brain, we alleviate this challenge and propose to prune LLMs by identifying and preserving functional networks within LLMs in this study. To achieve this, we treat an LLM as a digital brain and decompose the LLM into functional networks, analogous to identifying functional brain networks in neuroimaging data. Afterwards, an LLM is pruned by preserving the key neurons within these functional networks. Experimental results demonstrate that the proposed method can successfully identify and locate functional networks and key neurons in LLMs, enabling efficient model pruning. Our code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 9 pages, 5 figures
☆ Resource-Limited Joint Multimodal Sentiment Reasoning and Classification via Chain-of-Thought Enhancement and Distillation
The surge in rich multimodal content on social media platforms has greatly advanced Multimodal Sentiment Analysis (MSA), with Large Language Models (LLMs) further accelerating progress in this field. Current approaches primarily leverage the knowledge and reasoning capabilities of parameter-heavy (Multimodal) LLMs for sentiment classification, overlooking autonomous multimodal sentiment reasoning generation in resource-constrained environments. Therefore, we focus on the Resource-Limited Joint Multimodal Sentiment Reasoning and Classification task, JMSRC, which simultaneously performs multimodal sentiment reasoning chain generation and sentiment classification only with a lightweight model. We propose a Multimodal Chain-of-Thought Reasoning Distillation model, MulCoT-RD, designed for JMSRC that employs a "Teacher-Assistant-Student" distillation paradigm to address deployment constraints in resource-limited environments. We first leverage a high-performance Multimodal Large Language Model (MLLM) to generate the initial reasoning dataset and train a medium-sized assistant model with a multi-task learning mechanism. A lightweight student model is jointly trained to perform efficient multimodal sentiment reasoning generation and classification. Extensive experiments on four datasets demonstrate that MulCoT-RD with only 3B parameters achieves strong performance on JMSRC, while exhibiting robust generalization and enhanced interpretability.
☆ FAITH: A Framework for Assessing Intrinsic Tabular Hallucinations in finance
Hallucination remains a critical challenge for deploying Large Language Models (LLMs) in finance. Accurate extraction and precise calculation from tabular data are essential for reliable financial analysis, since even minor numerical errors can undermine decision-making and regulatory compliance. Financial applications have unique requirements, often relying on context-dependent, numerical, and proprietary tabular data that existing hallucination benchmarks rarely capture. In this study, we develop a rigorous and scalable framework for evaluating intrinsic hallucinations in financial LLMs, conceptualized as a context-aware masked span prediction task over real-world financial documents. Our main contributions are: (1) a novel, automated dataset creation paradigm using a masking strategy; (2) a new hallucination evaluation dataset derived from S&P 500 annual reports; and (3) a comprehensive evaluation of intrinsic hallucination patterns in state-of-the-art LLMs on financial tabular data. Our work provides a robust methodology for in-house LLM evaluation and serves as a critical step toward building more trustworthy and reliable financial Generative AI systems.
comment: 9 pages
☆ QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.
comment: The source code for our system is released in https://github.com/jzzzzh/QA-Dragon
☆ ATLANTIS at SemEval-2025 Task 3: Detecting Hallucinated Text Spans in Question Answering
This paper presents the contributions of the ATLANTIS team to SemEval-2025 Task 3, focusing on detecting hallucinated text spans in question answering systems. Large Language Models (LLMs) have significantly advanced Natural Language Generation (NLG) but remain susceptible to hallucinations, generating incorrect or misleading content. To address this, we explored methods both with and without external context, utilizing few-shot prompting with a LLM, token-level classification or LLM fine-tuned on synthetic data. Notably, our approaches achieved top rankings in Spanish and competitive placements in English and German. This work highlights the importance of integrating relevant context to mitigate hallucinations and demonstrate the potential of fine-tuned models and prompt engineering.
☆ Posterior-GRPO: Rewarding Reasoning Processes in Code Generation
Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.
☆ Aligning LLMs on a Budget: Inference-Time Alignment with Heuristic Reward Models
Aligning LLMs with user preferences is crucial for real-world use but often requires costly fine-tuning or expensive inference, forcing trade-offs between alignment quality and computational cost. Existing inference-time methods typically ignore this balance, focusing solely on the optimized policy's performance. We propose HIA (Heuristic-Guided Inference-time Alignment), a tuning-free, black-box-compatible approach that uses a lightweight prompt optimizer, heuristic reward models, and two-stage filtering to reduce inference calls while preserving alignment quality. On real-world prompt datasets, HelpSteer and ComPRed, HIA outperforms best-of-N sampling, beam search, and greedy search baselines in multi-objective, goal-conditioned tasks under the same inference budget. We also find that HIA is effective under low-inference budgets with as little as one or two response queries, offering a practical solution for scalable, personalized LLM deployment.
☆ Speech LLMs in Low-Resource Scenarios: Data Volume Requirements and the Impact of Pretraining on High-Resource Languages
Large language models (LLMs) have demonstrated potential in handling spoken inputs for high-resource languages, reaching state-of-the-art performance in various tasks. However, their applicability is still less explored in low-resource settings. This work investigates the use of Speech LLMs for low-resource Automatic Speech Recognition using the SLAM-ASR framework, where a trainable lightweight projector connects a speech encoder and a LLM. Firstly, we assess training data volume requirements to match Whisper-only performance, re-emphasizing the challenges of limited data. Secondly, we show that leveraging mono- or multilingual projectors pretrained on high-resource languages reduces the impact of data scarcity, especially with small training sets. Using multilingual LLMs (EuroLLM, Salamandra) with whisper-large-v3-turbo, we evaluate performance on several public benchmarks, providing insights for future research on optimizing Speech LLMs for low-resource languages and multilinguality.
comment: Accepted at Interspeech 2025. 5 pages, 2 figures, 3 tables
☆ Towards Assessing Medical Ethics from Knowledge to Practice
The integration of large language models into healthcare necessitates a rigorous evaluation of their ethical reasoning, an area current benchmarks often overlook. We introduce PrinciplismQA, a comprehensive benchmark with 3,648 questions designed to systematically assess LLMs' alignment with core medical ethics. Grounded in Principlism, our benchmark features a high-quality dataset. This includes multiple-choice questions curated from authoritative textbooks and open-ended questions sourced from authoritative medical ethics case study literature, all validated by medical experts. Our experiments reveal a significant gap between models' ethical knowledge and their practical application, especially in dynamically applying ethical principles to real-world scenarios. Most LLMs struggle with dilemmas concerning Beneficence, often over-emphasizing other principles. Frontier closed-source models, driven by strong general capabilities, currently lead the benchmark. Notably, medical domain fine-tuning can enhance models' overall ethical competence, but further progress requires better alignment with medical ethical knowledge. PrinciplismQA offers a scalable framework to diagnose these specific ethical weaknesses, paving the way for more balanced and responsible medical AI.
☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
☆ Attention Basin: Why Contextual Position Matters in Large Language Models
The performance of Large Language Models (LLMs) is significantly sensitive to the contextual position of information in the input. To investigate the mechanism behind this positional bias, our extensive experiments reveal a consistent phenomenon we term the attention basin: when presented with a sequence of structured items (e.g., retrieved documents or few-shot examples), models systematically assign higher attention to the items at the beginning and end of the sequence, while neglecting those in the middle. Crucially, our analysis further reveals that allocating higher attention to critical information is key to enhancing model performance. Based on these insights, we introduce Attention-Driven Reranking (AttnRank), a two-stage framework that (i) estimates a model's intrinsic positional attention preferences using a small calibration set, and (ii) reorders retrieved documents or few-shot examples to align the most salient content with these high-attention positions. AttnRank is a model-agnostic, training-free, and plug-and-play method with minimal computational overhead. Experiments on multi-hop QA and few-shot in-context learning tasks demonstrate that AttnRank achieves substantial improvements across 10 large language models of varying architectures and scales, without modifying model parameters or training procedures.
☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
☆ BEE-RAG: Balanced Entropy Engineering for Retrieval-Augmented Generation
With the rapid advancement of large language models (LLMs), retrieval-augmented generation (RAG) has emerged as a critical approach to supplement the inherent knowledge limitations of LLMs. However, due to the typically large volume of retrieved information, RAG tends to operate with long context lengths. From the perspective of entropy engineering, we identify unconstrained entropy growth and attention dilution due to long retrieval context as significant factors affecting RAG performance. In this paper, we propose the balanced entropy-engineered RAG (BEE-RAG) framework, which improves the adaptability of RAG systems to varying context lengths through the principle of entropy invariance. By leveraging balanced context entropy to reformulate attention dynamics, BEE-RAG separates attention sensitivity from context length, ensuring a stable entropy level. Building upon this, we introduce a zero-shot inference strategy for multi-importance estimation and a parameter-efficient adaptive fine-tuning mechanism to obtain the optimal balancing factor for different settings. Extensive experiments across multiple RAG tasks demonstrate the effectiveness of BEE-RAG.
☆ Multimodal Fact Checking with Unified Visual, Textual, and Contextual Representations
The growing rate of multimodal misinformation, where claims are supported by both text and images, poses significant challenges to fact-checking systems that rely primarily on textual evidence. In this work, we have proposed a unified framework for fine-grained multimodal fact verification called "MultiCheck", designed to reason over structured textual and visual signals. Our architecture combines dedicated encoders for text and images with a fusion module that captures cross-modal relationships using element-wise interactions. A classification head then predicts the veracity of a claim, supported by a contrastive learning objective that encourages semantic alignment between claim-evidence pairs in a shared latent space. We evaluate our approach on the Factify 2 dataset, achieving a weighted F1 score of 0.84, substantially outperforming the baseline. These results highlight the effectiveness of explicit multimodal reasoning and demonstrate the potential of our approach for scalable and interpretable fact-checking in complex, real-world scenarios.
☆ JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus. Current research predominantly focuses on maximizing attack success rate (ASR), often overlooking whether the generated responses actually fulfill the attacker's malicious intent. This oversight frequently leads to low-quality outputs that bypass safety filters but lack substantial harmful content. To address this gap, we propose JPS, \underline{J}ailbreak MLLMs with collaborative visual \underline{P}erturbation and textual \underline{S}teering, which achieves jailbreaks via corporation of visual image and textually steering prompt. Specifically, JPS utilizes target-guided adversarial image perturbations for effective safety bypass, complemented by "steering prompt" optimized via a multi-agent system to specifically guide LLM responses fulfilling the attackers' intent. These visual and textual components undergo iterative co-optimization for enhanced performance. To evaluate the quality of attack outcomes, we propose the Malicious Intent Fulfillment Rate (MIFR) metric, assessed using a Reasoning-LLM-based evaluator. Our experiments show JPS sets a new state-of-the-art in both ASR and MIFR across various MLLMs and benchmarks, with analyses confirming its efficacy. Codes are available at \href{https://github.com/thu-coai/JPS}{https://github.com/thu-coai/JPS}. \color{warningcolor}{Warning: This paper contains potentially sensitive contents.}
comment: 10 pages, 3 tables, 2 figures, to appear in the Proceedings of the 33rd ACM International Conference on Multimedia (MM '25)
☆ Cognitive Duality for Adaptive Web Agents
Web navigation represents a critical and challenging domain for evaluating artificial general intelligence (AGI), demanding complex decision-making within high-entropy, dynamic environments with combinatorially explosive action spaces. Current approaches to building autonomous web agents either focus on offline imitation learning or online exploration, but rarely integrate both paradigms effectively. Inspired by the dual-process theory of human cognition, we derive a principled decomposition into fast System 1 and slow System 2 cognitive processes. This decomposition provides a unifying perspective on existing web agent methodologies, bridging the gap between offline learning of intuitive reactive behaviors and online acquisition of deliberative planning capabilities. We implement this framework in CogniWeb, a modular agent architecture that adaptively toggles between fast intuitive processing and deliberate reasoning based on task complexity. Our evaluation on WebArena demonstrates that CogniWeb achieves competitive performance (43.96% success rate) while maintaining significantly higher efficiency (75% reduction in token usage).
☆ Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.
☆ A Study of the Framework and Real-World Applications of Language Embedding for 3D Scene Understanding
Gaussian Splatting has rapidly emerged as a transformative technique for real-time 3D scene representation, offering a highly efficient and expressive alternative to Neural Radiance Fields (NeRF). Its ability to render complex scenes with high fidelity has enabled progress across domains such as scene reconstruction, robotics, and interactive content creation. More recently, the integration of Large Language Models (LLMs) and language embeddings into Gaussian Splatting pipelines has opened new possibilities for text-conditioned generation, editing, and semantic scene understanding. Despite these advances, a comprehensive overview of this emerging intersection has been lacking. This survey presents a structured review of current research efforts that combine language guidance with 3D Gaussian Splatting, detailing theoretical foundations, integration strategies, and real-world use cases. We highlight key limitations such as computational bottlenecks, generalizability, and the scarcity of semantically annotated 3D Gaussian data and outline open challenges and future directions for advancing language-guided 3D scene understanding using Gaussian Splatting.
☆ Evaluation of LLMs in AMR Parsing
Meaning Representation (AMR) is a semantic formalism that encodes sentence meaning as rooted, directed, acyclic graphs, where nodes represent concepts and edges denote semantic relations. Finetuning decoder only Large Language Models (LLMs) represent a promising novel straightfoward direction for AMR parsing. This paper presents a comprehensive evaluation of finetuning four distinct LLM architectures, Phi 3.5, Gemma 2, LLaMA 3.2, and DeepSeek R1 LLaMA Distilled using the LDC2020T02 Gold AMR3.0 test set. Our results have shown that straightfoward finetuning of decoder only LLMs can achieve comparable performance to complex State of the Art (SOTA) AMR parsers. Notably, LLaMA 3.2 demonstrates competitive performance against SOTA AMR parsers given a straightforward finetuning approach. We achieved SMATCH F1: 0.804 on the full LDC2020T02 test split, on par with APT + Silver (IBM) at 0.804 and approaching Graphene Smatch (MBSE) at 0.854. Across our analysis, we also observed a consistent pattern where LLaMA 3.2 leads in semantic performance while Phi 3.5 excels in structural validity.
comment: 27 pages, 32 figures
☆ Dialogues Aspect-based Sentiment Quadruple Extraction via Structural Entropy Minimization Partitioning CIKM2025
Dialogues Aspect-based Sentiment Quadruple Extraction (DiaASQ) aims to extract all target-aspect-opinion-sentiment quadruples from a given multi-round, multi-participant dialogue. Existing methods typically learn word relations across entire dialogues, assuming a uniform distribution of sentiment elements. However, we find that dialogues often contain multiple semantically independent sub-dialogues without clear dependencies between them. Therefore, learning word relationships across the entire dialogue inevitably introduces additional noise into the extraction process. To address this, our method focuses on partitioning dialogues into semantically independent sub-dialogues. Achieving completeness while minimizing these sub-dialogues presents a significant challenge. Simply partitioning based on reply relationships is ineffective. Instead, we propose utilizing a structural entropy minimization algorithm to partition the dialogues. This approach aims to preserve relevant utterances while distinguishing irrelevant ones as much as possible. Furthermore, we introduce a two-step framework for quadruple extraction: first extracting individual sentiment elements at the utterance level, then matching quadruples at the sub-dialogue level. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in DiaASQ with much lower computational costs.
comment: Accepted by CIKM2025
☆ Making Prompts First-Class Citizens for Adaptive LLM Pipelines
Modern LLM pipelines increasingly resemble data-centric systems: they retrieve external context, compose intermediate outputs, validate results, and adapt based on runtime feedback. Yet, the central element guiding this process -- the prompt -- remains a brittle, opaque string, disconnected from the surrounding dataflow. This disconnect limits reuse, optimization, and runtime control. In this paper, we describe our vision and an initial design for SPEAR, a language and runtime that fills this prompt management gap by making prompts structured, adaptive, and first-class components of the execution model. SPEAR enables (1) runtime prompt refinement -- modifying prompts dynamically in response to execution-time signals such as confidence, latency, or missing context; and (2) structured prompt management -- organizing prompt fragments into versioned views with support for introspection and logging. SPEAR defines a prompt algebra that governs how prompts are constructed and adapted within a pipeline. It supports multiple refinement modes (manual, assisted, and automatic), giving developers a balance between control and automation. By treating prompt logic as structured data, SPEAR enables optimizations such as operator fusion, prefix caching, and view reuse. Preliminary experiments quantify the behavior of different refinement modes compared to static prompts and agentic retries, as well as the impact of prompt-level optimizations such as operator fusion.
☆ Can Large Language Models Integrate Spatial Data? Empirical Insights into Reasoning Strengths and Computational Weaknesses
We explore the application of large language models (LLMs) to empower domain experts in integrating large, heterogeneous, and noisy urban spatial datasets. Traditional rule-based integration methods are unable to cover all edge cases, requiring manual verification and repair. Machine learning approaches require collecting and labeling of large numbers of task-specific samples. In this study, we investigate the potential of LLMs for spatial data integration. Our analysis first considers how LLMs reason about environmental spatial relationships mediated by human experience, such as between roads and sidewalks. We show that while LLMs exhibit spatial reasoning capabilities, they struggle to connect the macro-scale environment with the relevant computational geometry tasks, often producing logically incoherent responses. But when provided relevant features, thereby reducing dependence on spatial reasoning, LLMs are able to generate high-performing results. We then adapt a review-and-refine method, which proves remarkably effective in correcting erroneous initial responses while preserving accurate responses. We discuss practical implications of employing LLMs for spatial data integration in real-world contexts and outline future research directions, including post-training, multi-modal integration methods, and support for diverse data formats. Our findings position LLMs as a promising and flexible alternative to traditional rule-based heuristics, advancing the capabilities of adaptive spatial data integration.
☆ R-Zero: Self-Evolving Reasoning LLM from Zero Data
Self-evolving Large Language Models (LLMs) offer a scalable path toward super-intelligence by autonomously generating, refining, and learning from their own experiences. However, existing methods for training such models still rely heavily on vast human-curated tasks and labels, typically via fine-tuning or reinforcement learning, which poses a fundamental bottleneck to advancing AI systems toward capabilities beyond human intelligence. To overcome this limitation, we introduce R-Zero, a fully autonomous framework that generates its own training data from scratch. Starting from a single base LLM, R-Zero initializes two independent models with distinct roles, a Challenger and a Solver. These models are optimized separately and co-evolve through interaction: the Challenger is rewarded for proposing tasks near the edge of the Solver capability, and the Solver is rewarded for solving increasingly challenging tasks posed by the Challenger. This process yields a targeted, self-improving curriculum without any pre-existing tasks and labels. Empirically, R-Zero substantially improves reasoning capability across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49 on math-reasoning benchmarks and +7.54 on general-domain reasoning benchmarks.
☆ A Multi-Stage Large Language Model Framework for Extracting Suicide-Related Social Determinants of Health
Background: Understanding social determinants of health (SDoH) factors contributing to suicide incidents is crucial for early intervention and prevention. However, data-driven approaches to this goal face challenges such as long-tailed factor distributions, analyzing pivotal stressors preceding suicide incidents, and limited model explainability. Methods: We present a multi-stage large language model framework to enhance SDoH factor extraction from unstructured text. Our approach was compared to other state-of-the-art language models (i.e., pre-trained BioBERT and GPT-3.5-turbo) and reasoning models (i.e., DeepSeek-R1). We also evaluated how the model's explanations help people annotate SDoH factors more quickly and accurately. The analysis included both automated comparisons and a pilot user study. Results: We show that our proposed framework demonstrated performance boosts in the overarching task of extracting SDoH factors and in the finer-grained tasks of retrieving relevant context. Additionally, we show that fine-tuning a smaller, task-specific model achieves comparable or better performance with reduced inference costs. The multi-stage design not only enhances extraction but also provides intermediate explanations, improving model explainability. Conclusions: Our approach improves both the accuracy and transparency of extracting suicide-related SDoH from unstructured texts. These advancements have the potential to support early identification of individuals at risk and inform more effective prevention strategies.
☆ REINA: Regularized Entropy Information-Based Loss for Efficient Simultaneous Speech Translation
Simultaneous Speech Translation (SimulST) systems stream in audio while simultaneously emitting translated text or speech. Such systems face the significant challenge of balancing translation quality and latency. We introduce a strategy to optimize this tradeoff: wait for more input only if you gain information by doing so. Based on this strategy, we present Regularized Entropy INformation Adaptation (REINA), a novel loss to train an adaptive policy using an existing non-streaming translation model. We derive REINA from information theory principles and show that REINA helps push the reported Pareto frontier of the latency/quality tradeoff over prior works. Utilizing REINA, we train a SimulST model on French, Spanish and German, both from and into English. Training on only open source or synthetically generated data, we achieve state-of-the-art (SOTA) streaming results for models of comparable size. We also introduce a metric for streaming efficiency, quantitatively showing REINA improves the latency/quality trade-off by as much as 21% compared to prior approaches, normalized against non-streaming baseline BLEU scores.
☆ Towards Robust Evaluation of Visual Activity Recognition: Resolving Verb Ambiguity with Sense Clustering
Evaluating visual activity recognition systems is challenging due to inherent ambiguities in verb semantics and image interpretation. When describing actions in images, synonymous verbs can refer to the same event (e.g., brushing vs. grooming), while different perspectives can lead to equally valid but distinct verb choices (e.g., piloting vs. operating). Standard exact-match evaluation, which relies on a single gold answer, fails to capture these ambiguities, resulting in an incomplete assessment of model performance. To address this, we propose a vision-language clustering framework that constructs verb sense clusters, providing a more robust evaluation. Our analysis of the imSitu dataset shows that each image maps to an average of 2.8 sense clusters, with each cluster representing a distinct perspective of the image. We evaluate multiple activity recognition models and compare our cluster-based evaluation with standard evaluation methods. Additionally, our human alignment analysis suggests that the cluster-based evaluation better aligns with human judgements, offering a more nuanced assessment of model performance.
comment: 18 pages, 5 figures
☆ Do Machines Think Emotionally? Cognitive Appraisal Analysis of Large Language Models
Affective Computing has been established as a crucial field of inquiry to advance the holistic development of Artificial Intelligence (AI) systems. Foundation models -- especially Large Language Models (LLMs) -- have been evaluated, trained, or instruction-tuned in several past works, to become better predictors or generators of emotion. Most of these studies, however, approach emotion-related tasks in a supervised manner, assessing or training the capabilities of LLMs using discrete emotion labels associated with stimuli (e.g., text, images, video, audio). Evaluation studies, in particular, have often been limited to standard and superficial emotion-related tasks, such as the recognition of evoked or expressed emotions. In this paper, we move beyond surface-level emotion tasks to investigate how LLMs reason about emotions through cognitive dimensions. Drawing from cognitive appraisal theory, we examine whether LLMs produce coherent and plausible cognitive reasoning when reasoning about emotionally charged stimuli. We introduce a large-scale benchmark on Cognitive Reasoning for Emotions - CoRE - to evaluate internal cognitive structures implicitly used by LLMs for emotional reasoning. Through a plethora of evaluation experiments and analysis, we seek to answer: (a) Are models more likely to implicitly rely on specific cognitive appraisal dimensions?, (b) What cognitive dimensions are important for characterizing specific emotions?, and, (c) Can the internal representations of different emotion categories in LLMs be interpreted through cognitive appraisal dimensions? Our results and analyses reveal diverse reasoning patterns across different LLMs. Our benchmark and code will be made publicly available.
☆ Discovering Properties of Inflectional Morphology in Neural Emergent Communication
Emergent communication (EmCom) with deep neural network-based agents promises to yield insights into the nature of human language, but remains focused primarily on a few subfield-specific goals and metrics that prioritize communication schemes which represent attributes with unique characters one-to-one and compose them syntactically. We thus reinterpret a common EmCom setting, the attribute-value reconstruction game, by imposing a small-vocabulary constraint to simulate double articulation, and formulating a novel setting analogous to naturalistic inflectional morphology (enabling meaningful comparison to natural language communication schemes). We develop new metrics and explore variations of this game motivated by real properties of inflectional morphology: concatenativity and fusionality. Through our experiments, we discover that simulated phonological constraints encourage concatenative morphology, and emergent languages replicate the tendency of natural languages to fuse grammatical attributes.
☆ NanoCodec: Towards High-Quality Ultra Fast Speech LLM Inference
Large Language Models (LLMs) have significantly advanced audio processing by leveraging audio codecs to discretize audio into tokens, enabling the application of language modeling techniques to speech data. However, existing audio codecs often operate at high frame rates, leading to slow training and inference, particularly for autoregressive models. To address this, there is growing interest in low frame-rate audio codecs, which reduce the number of autoregressive steps required to generate one second of audio. In this paper, we conduct ablation studies to examine the impact of frame rate, bitrate, and causality on codec reconstruction quality. Based on our findings, we introduce NanoCodec, a state-of-the-art audio codec that achieves high-quality compression at just 12.5 frames per second (FPS). NanoCodec outperforms related works across various bitrate ranges, establishing a new benchmark for low-latency and efficient Speech LLM training and inference.
comment: Accepted to Interspeech 2025
☆ "Mirror" Language AI Models of Depression are Criterion-Contaminated
A growing number of studies show near-perfect LLM language-based prediction of depression assessment scores (up to R2 of .70). However, many develop these models directly from language responses to depression assessments. These "Mirror models" suffer from "criterion contamination", which arises when a predicted score depends in part on the predictors themselves. This causes artificial effect size inflation which reduces model generalizability. The present study compares the performance of Mirror models versus "Non-Mirror models", which are developed from language that does not mirror the assessment they are developed to predict. N = 110 research participants completed two different interviews: structured diagnostic and life history interviews. GPT-4, GPT-4o and LLaMA3-70B were then prompted to predict structured diagnostic interview depression scores from the two transcripts separately. Mirror models (using structured diagnostic data) showed very large effect sizes (e.g., R2 = .80). As expected, NonMirror models (using life history data) demonstrated smaller effect sizes, but were relatively large (e.g., R2 = .27). When Mirror and Non-Mirror model-predicted structured interview depression scores were correlated with self-reported depression symptoms, Mirror and NonMirror performed the same (e.g., r = ~.54), indicating that Mirror models contain bias perhaps due to criterion contamination. Topic modeling identified clusters across Mirror and Non-Mirror models, as well as between true-positive and false-positive predictions. In this head-to-head comparison study, Mirror language AI models of depression showed artificially inflated effect sizes and less generalizability. As language AI models for depression continue to evolve, incorporating Non-Mirror models may identify interpretable, and generalizable semantic features that have unique utility in real-world psychological assessment.
comment: 39 pages, 9 figures
☆ Human-like fleeting memory improves language learning but impairs reading time prediction in transformer language models
Human memory is fleeting. As words are processed, the exact wordforms that make up incoming sentences are rapidly lost. Cognitive scientists have long believed that this limitation of memory may, paradoxically, help in learning language - an idea supported by classic connectionist modelling work. The rise of Transformers appears to challenge this idea, as these models can learn language effectively, despite lacking memory limitations or other architectural recency biases. Here, we investigate the hypothesized benefit of fleeting memory for language learning in tightly controlled experiments on transformer language models. Training transformers with and without fleeting memory on a developmentally realistic training set, we find that fleeting memory consistently improves language learning (as quantified by both overall language modelling performance and targeted syntactic evaluation) but, unexpectedly, impairs surprisal-based prediction of human reading times. Interestingly, follow up analyses revealed that this discrepancy - better language modeling, yet worse reading time prediction - could not be accounted for by prior explanations of why better language models sometimes fit human reading time worse. Together, these results support a benefit of memory limitations on neural network language learning - but not on predicting behavior.
☆ Basic interactive algorithms: Preview
This dialog paper offers a preview and provides a foretaste of an upcoming work on the axiomatization of basic interactive algorithms. The modern notion of algorithm was elucidated in the 1930s--1950s. It was axiomatized a quarter of a century ago as the notion of ``sequential algorithm'' or ``classical algorithm''; we prefer to call it ``basic algorithm" now. The axiomatization was used to show that for every basic algorithm there is a behaviorally equivalent abstract state machine. It was also used to prove the Church-Turing thesis as it has been understood by the logicians. Starting from the 1960s, the notion of algorithm has expanded -- probabilistic algorithms, quantum algorithms, etc. -- prompting introduction of a much more ambitious version of the Church-Turing thesis commonly known as the ``physical thesis.'' We emphasize the difference between the two versions of the Church-Turing thesis and illustrate how nondeterministic and probabilistic algorithms can be viewed as basic algorithms with appropriate oracles. The same view applies to quantum circuit algorithms and many other classes of algorithms.
☆ FineDialFact: A benchmark for Fine-grained Dialogue Fact Verification
Large Language Models (LLMs) are known to produce hallucinations - factually incorrect or fabricated information - which poses significant challenges for many Natural Language Processing (NLP) applications, such as dialogue systems. As a result, detecting hallucinations has become a critical area of research. Current approaches to hallucination detection in dialogue systems primarily focus on verifying the factual consistency of generated responses. However, these responses often contain a mix of accurate, inaccurate or unverifiable facts, making one factual label overly simplistic and coarse-grained. In this paper, we introduce a benchmark, FineDialFact, for fine-grained dialogue fact verification, which involves verifying atomic facts extracted from dialogue responses. To support this, we construct a dataset based on publicly available dialogue datasets and evaluate it using various baseline methods. Experimental results demonstrate that methods incorporating Chain-of-Thought (CoT) reasoning can enhance performance in dialogue fact verification. Despite this, the best F1-score achieved on the HybriDialogue, an open-domain dialogue dataset, is only 0.75, indicating that the benchmark remains a challenging task for future research. Our dataset and code will be public on GitHub.
☆ Guardians and Offenders: A Survey on Harmful Content Generation and Safety Mitigation
Large Language Models (LLMs) have revolutionized content creation across digital platforms, offering unprecedented capabilities in natural language generation and understanding. These models enable beneficial applications such as content generation, question and answering (Q&A), programming, and code reasoning. Meanwhile, they also pose serious risks by inadvertently or intentionally producing toxic, offensive, or biased content. This dual role of LLMs, both as powerful tools for solving real-world problems and as potential sources of harmful language, presents a pressing sociotechnical challenge. In this survey, we systematically review recent studies spanning unintentional toxicity, adversarial jailbreaking attacks, and content moderation techniques. We propose a unified taxonomy of LLM-related harms and defenses, analyze emerging multimodal and LLM-assisted jailbreak strategies, and assess mitigation efforts, including reinforcement learning with human feedback (RLHF), prompt engineering, and safety alignment. Our synthesis highlights the evolving landscape of LLM safety, identifies limitations in current evaluation methodologies, and outlines future research directions to guide the development of robust and ethically aligned language technologies.
☆ InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.
comment: 11 pages, 3 figures
♻ ☆ TreeDiff: AST-Guided Code Generation with Diffusion LLMs
Recent advances in diffusion-based language models have opened new possibilities for controllable and bidirectional sequence generation. These models provide an alternative to traditional autoregressive approaches by framing text generation as an iterative denoising process. However, applying diffusion models to structured domains such as source code remains a significant challenge. Programming languages differ from natural language in that they follow strict syntactic and semantic rules, with hierarchical organization that must be preserved for correctness. Standard token-level corruption techniques used during training often ignore this structure, which may hinder the model's ability to learn meaningful representations of code. To address this limitation, we propose a syntax-aware diffusion framework that incorporates structural priors from Abstract Syntax Trees (ASTs) into the denoising process. Instead of masking individual tokens at random, we selectively corrupt syntactically meaningful code spans derived from AST subtrees. This enables the model to reconstruct programs in a way that respects grammatical boundaries and captures long-range dependencies. Experimental results demonstrate that syntax-aware corruption significantly improves syntactic correctness, reconstruction accuracy, and generalization to unseen code patterns. These findings highlight the potential of incorporating structural information into diffusion-based training and suggest that syntax-guided denoising is a promising direction for advancing diffusion-based language models in code generation tasks.
♻ ☆ An Entity Linking Agent for Question Answering
Some Question Answering (QA) systems rely on knowledge bases (KBs) to provide accurate answers. Entity Linking (EL) plays a critical role in linking natural language mentions to KB entries. However, most existing EL methods are designed for long contexts and do not perform well on short, ambiguous user questions in QA tasks. We propose an entity linking agent for QA, based on a Large Language Model that simulates human cognitive workflows. The agent actively identifies entity mentions, retrieves candidate entities, and makes decision. To verify the effectiveness of our agent, we conduct two experiments: tool-based entity linking and QA task evaluation. The results confirm the robustness and effectiveness of our agent.
comment: 12 pages, 2 figures
♻ ☆ SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions in recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a dual-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implements solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful non-reasoning and reasoning LLMs as foundational models. The best-performing LLM using \ModelName~achieves only 39% execution accuracy, highlighting the benchmark's difficulty. Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We make available our benchmark and code at https://github.com/xyzCS/SciReplicate-Bench and project homepage at https://xyzcs.github.io/scireplicate.github.io/.
♻ ☆ Improving Factuality for Dialogue Response Generation via Graph-Based Knowledge Augmentation
Large Language Models (LLMs) succeed in many natural language processing tasks. However, their tendency to hallucinate - generate plausible but inconsistent or factually incorrect text - can cause significant problems in certain tasks, including response generation in dialogue. To mitigate this issue, we propose two novel graph knowledge-augmented frameworks, Dialogue Response Generation via Textualised Graphs (TG-DRG) and Graph-Aware Dialogue Response Generation (GA-DRG), which combine reasoning-guided dialogue reformulation, dialogue sense knowledge selection, and graph-enhanced response generation to improve the factuality of dialogue responses. To evaluate the factuality of generated responses, we propose a dialogue fact score that addresses the limitations of existing fact-score methods in dialogue settings, providing a more reliable assessment of factual consistency. We evaluate our methods using different baselines on the OpendialKG and HybriDialogue datasets. Our methods noticeably improve factuality compared to other graph knowledge-augmentation baselines, including the state-of-the-art G-retriever, achieving improvements of 3.47% on OpendialKG and 3.12% on HybriDialogue in terms of dialogue fact score. The code will be released on GitHub.
♻ ☆ Teaching LLMs How to Learn with Contextual Fine-Tuning ICLR 2025
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
comment: ICLR 2025
♻ ☆ BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts
Despite the remarkable capabilities of large language models (LLMs) across a range of tasks, mathematical reasoning remains a challenging frontier. Motivated by the observation that humans learn more effectively when prompted not what to think but how to think, we introduce BloomWise, a cognitively-inspired prompting technique designed to enhance LLMs' performance on mathematical problem solving while making their solutions more explainable. BloomWise encourages LLMs to generate solutions - in the form of explanations - by progressing through a sequence of cognitive operations-from basic (e.g., remembering) to more advanced reasoning skills (e.g., evaluating) - mirroring how humans build understanding. The process iterates through these levels, halting early if a convergence criterion is met: specifically, if two or more consecutive levels yield the same answer, the solution from the earliest such level is output; otherwise, the process continues until all levels are completed. Through extensive experiments across five popular math reasoning datasets, we demonstrate the effectiveness of BloomWise. We also present comprehensive ablation studies to analyze the strengths of each component within our system.
comment: 16 pages, 2 figures
♻ ☆ Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs
Despite significant progress on popular multimodal benchmarks, state-of-the-art Multimodal Large Language Models (MLLMs) continue to struggle with basic visual reasoning tasks that are trivially solved by humans, such as recognizing spatial relationships. To systematically investigate this gap, we introduce VisFactor, a benchmark that digitizes 20 vision-centric subtests from a well-established cognitive psychology assessment. These subtests span four core domains of human visual cognition: (1) Visualization and Spatial Processing, (2) Perceptual and Closure, (3) Memory, and (4) Reasoning. We evaluate 20 frontier MLLMs from GPT, Gemini, Claude, LLaMA, Qwen, and SEED families. The best-performing model achieves a score of only 25.19 out of 100, with consistent failures on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination, regardless of model size or prompting strategy. These findings suggest that current MLLM performance gains on high-level benchmarks do not reflect human-like low-level visual cognition, challenging the assumption that large-scale pretraining naturally induces gestalt-like perceptual capabilities. The dataset and evaluation toolkit are publicly available at: https://github.com/CUHK-ARISE/VisFactor.
comment: Update: Evaluated 20 MLLMs; Added generated test cases
♻ ☆ Language Model Uncertainty Quantification with Attention Chain
Accurately quantifying a large language model's (LLM) predictive uncertainty is crucial for judging the reliability of its answers. While most existing research focuses on short, directly answerable questions with closed-form outputs (e.g., multiple-choice), involving intermediate reasoning steps in LLM responses is increasingly important. This added complexity complicates uncertainty quantification (UQ) because the probabilities assigned to answer tokens are conditioned on a vast space of preceding reasoning tokens. Direct marginalization is infeasible, and the dependency inflates probability estimates, causing overconfidence in UQ. To address this, we propose UQAC, an efficient method that narrows the reasoning space to a tractable size for marginalization. UQAC iteratively constructs an "attention chain" of tokens deemed "semantically crucial" to the final answer via a backtracking procedure. Starting from the answer tokens, it uses attention weights to identify the most influential predecessors, then iterates this process until reaching the input tokens. The resulting chain is further refined with similarity filtering and probability thresholding, which reduce the reasoning space, facilitating the approximation of the marginal answer token probabilities. We validate UQAC on multiple reasoning benchmarks with advanced open-source LLMs, demonstrating that it consistently delivers reliable UQ estimates with high computational efficiency.
comment: 36 pages, 7 figures, 36 tables
♻ ☆ Enabling On-Device Medical AI Assistants via Input-Driven Saliency Adaptation
Large Language Models (LLMs) have significant impact on the healthcare scenarios but remain prohibitively large for deployment in real-time, resource-constrained environments such as edge devices. In this work, we introduce a novel medical assistant system, optimized through our general-purpose compression framework, which tailors Large Language Models (LLMs) for deployment in specialized domains. By measuring neuron saliency on domain-specific data, our method can aggressively prune irrelevant neurons, reducing model size while preserving performance. Following pruning, we apply post-training quantization to further reduce the memory footprint, and evaluate the compressed model across medical benchmarks including MedMCQA, MedQA, and PubMedQA. We also deploy the 50\% compressed Gemma and the 67\% compressed LLaMA3 models on Jetson Orin Nano (18.7W peak) and Raspberry Pi 5 (6.3W peak), achieving real-time, energy-efficient inference under hardware constraints.
comment: Accepted for publication in the Proceedings of IEEE BioCAS 2025
♻ ☆ Understanding Large Language Model Behaviors through Interactive Counterfactual Generation and Analysis
Understanding the behavior of large language models (LLMs) is crucial for ensuring their safe and reliable use. However, existing explainable AI (XAI) methods for LLMs primarily rely on word-level explanations, which are often computationally inefficient and misaligned with human reasoning processes. Moreover, these methods often treat explanation as a one-time output, overlooking its inherently interactive and iterative nature. In this paper, we present LLM Analyzer, an interactive visualization system that addresses these limitations by enabling intuitive and efficient exploration of LLM behaviors through counterfactual analysis. Our system features a novel algorithm that generates fluent and semantically meaningful counterfactuals via targeted removal and replacement operations at user-defined levels of granularity. These counterfactuals are used to compute feature attribution scores, which are then integrated with concrete examples in a table-based visualization, supporting dynamic analysis of model behavior. A user study with LLM practitioners and interviews with experts demonstrate the system's usability and effectiveness, emphasizing the importance of involving humans in the explanation process as active participants rather than passive recipients.
♻ ☆ Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
comment: 53 pages, 5 figures
♻ ☆ Hierarchical Budget Policy Optimization for Adaptive Reasoning
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.
comment: Code: https://github.com/zju-real/hbpo Project Page:https://zju-real.github.io/hbpo/
♻ ☆ PolyGuard: A Multilingual Safety Moderation Tool for 17 Languages
Truly multilingual safety moderation efforts for Large Language Models (LLMs) have been hindered by a narrow focus on a small set of languages (e.g., English, Chinese) as well as a limited scope of safety definition, resulting in significant gaps in moderation capabilities. To bridge these gaps, we release POLYGUARD, a new state-of-the-art multilingual safety model for safeguarding LLM generations, and the corresponding training and evaluation datasets. POLYGUARD is trained on POLYGUARDMIX, the largest multilingual safety training corpus to date containing 1.91M samples across 17 languages (e.g., Chinese, Czech, English, Hindi). We also introduce POLYGUARDPROMPTS, a high quality multilingual benchmark with 29K samples for the evaluation of safety guardrails. Created by combining naturally occurring multilingual human-LLM interactions and human-verified machine translations of an English-only safety dataset (WildGuardMix; Han et al., 2024), our datasets contain prompt-output pairs with labels of prompt harmfulness, response harmfulness, and response refusal. Through extensive evaluations across multiple safety and toxicity benchmarks, we demonstrate that POLYGUARD outperforms existing state-of-the-art open-weight and commercial safety classifiers by 5.5%. Our contributions advance efforts toward safer multilingual LLMs for all global users.
comment: Accepted to COLM 2025 Main Conference
♻ ☆ Recent Advances in Speech Language Models: A Survey ACL 2025
Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion, significant latency due to the complex pipeline, and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize their evaluation metrics, and discuss the challenges and future research directions in this rapidly evolving field. The GitHub repository is available at https://github.com/dreamtheater123/Awesome-SpeechLM-Survey
comment: The reduced version of this paper has been accepted at ACL 2025
♻ ☆ A Latent-Variable Model for Intrinsic Probing
The success of pre-trained contextualized representations has prompted researchers to analyze them for the presence of linguistic information. Indeed, it is natural to assume that these pre-trained representations do encode some level of linguistic knowledge as they have brought about large empirical improvements on a wide variety of NLP tasks, which suggests they are learning true linguistic generalization. In this work, we focus on intrinsic probing, an analysis technique where the goal is not only to identify whether a representation encodes a linguistic attribute but also to pinpoint where this attribute is encoded. We propose a novel latent-variable formulation for constructing intrinsic probes and derive a tractable variational approximation to the log-likelihood. Our results show that our model is versatile and yields tighter mutual information estimates than two intrinsic probes previously proposed in the literature. Finally, we find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
♻ ☆ From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.
comment: Code and data available at https://github.com/YerbaPage/MGDebugger
♻ ☆ GuARD: Effective Anomaly Detection through a Text-Rich and Graph-Informed Language Model KDD 2025
Anomaly detection on text-rich graphs is widely prevalent in real life, such as detecting incorrectly assigned academic papers to authors and detecting bots in social networks. The remarkable capabilities of large language models (LLMs) pave a new revenue by utilizing rich-text information for effective anomaly detection. However, simply introducing rich texts into LLMs can obscure essential detection cues and introduce high fine-tuning costs. Moreover, LLMs often overlook the intrinsic structural bias of graphs which is vital for distinguishing normal from abnormal node patterns. To this end, this paper introduces GuARD, a text-rich and graph-informed language model that combines key structural features from graph-based methods with fine-grained semantic attributes extracted via small language models for effective anomaly detection on text-rich graphs. GuARD is optimized with the progressive multi-modal multi-turn instruction tuning framework in the task-guided instruction tuning regime tailed to incorporate both rich-text and structural modalities. Extensive experiments on four datasets reveal that GuARD outperforms graph-based and LLM-based anomaly detection methods, while offering up to 5$\times$ times speedup in training and 5$\times$ times speedup in inference over vanilla long-context LLMs on the large-scale WhoIsWho dataset.
comment: Accepted at KDD 2025
♻ ☆ IFDECORATOR: Wrapping Instruction Following Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) improves instruction following capabilities of large language models (LLMs), but suffers from training inefficiency due to inadequate difficulty assessment. Moreover, RLVR is prone to over-optimization, where LLMs exploit verification shortcuts without aligning to the actual intent of user instructions. We introduce Instruction Following Decorator (IFDecorator}, a framework that wraps RLVR training into a robust and sample-efficient pipeline. It consists of three components: (1) a cooperative-adversarial data flywheel that co-evolves instructions and hybrid verifications, generating progressively more challenging instruction-verification pairs; (2) IntentCheck, a bypass module enforcing intent alignment; and (3) trip wires, a diagnostic mechanism that detects reward hacking via trap instructions, which trigger and capture shortcut exploitation behaviors. Our Qwen2.5-32B-Instruct-IFDecorator achieves 87.43% accuracy on IFEval, outperforming larger proprietary models such as GPT-4o. Additionally, we demonstrate substantial improvements on FollowBench while preserving general capabilities. Our trip wires show significant reductions in reward hacking rates. We will release models, code, and data for future research.
comment: 7 pages, 4 figures
♻ ☆ McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models ACL2025
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
comment: Accepted by ACL2025 Findings
♻ ☆ WhisperNER: Unified Open Named Entity and Speech Recognition
Integrating named entity recognition (NER) with automatic speech recognition (ASR) can significantly enhance transcription accuracy and informativeness. In this paper, we introduce WhisperNER, a novel model that allows joint speech transcription and entity recognition. WhisperNER supports open-type NER, enabling recognition of diverse and evolving entities at inference. Building on recent advancements in open NER research, we augment a large synthetic dataset with synthetic speech samples. This allows us to train WhisperNER on a large number of examples with diverse NER tags. During training, the model is prompted with NER labels and optimized to output the transcribed utterance along with the corresponding tagged entities. To evaluate WhisperNER, we generate synthetic speech for commonly used NER benchmarks and annotate existing ASR datasets with open NER tags. Our experiments demonstrate that WhisperNER outperforms natural baselines on both out-of-domain open type NER and supervised finetuning.
comment: ASRU 2025, IEEE
♻ ☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. We present VeOmni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. VeOmni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. VeOmni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. Using VeOmni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
♻ ☆ Efficient Attention Mechanisms for Large Language Models: A Survey
Transformer-based architectures have become the prevailing backbone of large language models. However, the quadratic time and memory complexity of self-attention remains a fundamental obstacle to efficient long-context modeling. To address this limitation, recent research has introduced two principal categories of efficient attention mechanisms. Linear attention methods achieve linear complexity through kernel approximations, recurrent formulations, or fastweight dynamics, thereby enabling scalable inference with reduced computational overhead. Sparse attention techniques, in contrast, limit attention computation to selected subsets of tokens based on fixed patterns, block-wise routing, or clustering strategies, enhancing efficiency while preserving contextual coverage. This survey provides a systematic and comprehensive overview of these developments, integrating both algorithmic innovations and hardware-level considerations. In addition, we analyze the incorporation of efficient attention into largescale pre-trained language models, including both architectures built entirely on efficient attention and hybrid designs that combine local and global components. By aligning theoretical foundations with practical deployment strategies, this work aims to serve as a foundational reference for advancing the design of scalable and efficient language models.
comment: work in progress
♻ ☆ Efficient Knowledge Injection in LLMs via Self-Distillation
In many practical applications, large language models (LLMs) need to acquire new knowledge not present in their pre-training data. Efficiently leveraging this knowledge usually relies on supervised fine-tuning or retrieval-augmented generation (RAG). Although RAG has emerged as the industry standard for knowledge injection, fine-tuning has not yet achieved comparable success. This paper proposes utilizing prompt distillation, a self-distillation-based method previously explored primarily for style alignment and instruction tuning, to internalize new factual knowledge from free-form documents. Unlike prior methods, our approach requires neither larger teacher models nor structured knowledge formats. Across multiple LLM sizes and model families, we show that prompt distillation outperforms standard supervised fine-tuning and can even surpass RAG. We analyze the key factors contributing to prompt distillation's effectiveness and examine how it scales.
comment: Preprint
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
♻ ☆ ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
♻ ☆ FinCoT: Grounding Chain-of-Thought in Expert Financial Reasoning
This paper presents FinCoT, a structured chain-of-thought (CoT) prompting framework that embeds domain-specific expert financial reasoning blueprints to guide large language models' behaviors. We identify three main prompting styles in financial NLP (FinNLP): (1) standard prompting (zero-shot), (2) unstructured CoT (free-form reasoning), and (3) structured CoT (with explicitly structured reasoning steps). Prior work has mainly focused on the first two, while structured CoT remains underexplored and lacks domain expertise incorporation. Therefore, we evaluate all three prompting approaches across ten CFA-style financial domains and introduce FinCoT as the first structured finance-specific prompting approach incorporating blueprints from domain experts. FinCoT improves the accuracy of a general-purpose model, Qwen3-8B-Base, from 63.2% to 80.5%, and boosts Fin-R1 (7B), a finance-specific model, from 65.7% to 75.7%, while reducing output length by up to 8.9x and 1.16x compared to structured CoT methods, respectively. We find that FinCoT proves most effective for models lacking financial post-training. Our findings show that FinCoT does not only improve performance and reduce inference costs but also yields more interpretable and expert-aligned reasoning traces.
♻ ☆ Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: The code is available at https://github.com/jongwooko/flex-judge
♻ ☆ SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
comment: 47 pages, 18 figures, authors are listed in alphabetical order by their last names; v3 modifies minor issues
♻ ☆ Tell Me Who Your Students Are: GPT Can Generate Valid Multiple-Choice Questions When Students' (Mis)Understanding Is Hinted
The primary goal of this study is to develop and evaluate an innovative prompting technique, AnaQuest, for generating multiple-choice questions (MCQs) using a pre-trained large language model. In AnaQuest, the choice items are sentence-level assertions about complex concepts. The technique integrates formative and summative assessments. In the formative phase, students answer open-ended questions for target concepts in free text. For summative assessment, AnaQuest analyzes these responses to generate both correct and incorrect assertions. To evaluate the validity of the generated MCQs, Item Response Theory (IRT) was applied to compare item characteristics between MCQs generated by AnaQuest, a baseline ChatGPT prompt, and human-crafted items. An empirical study found that expert instructors rated MCQs generated by both AI models to be as valid as those created by human instructors. However, IRT-based analysis revealed that AnaQuest-generated questions - particularly those with incorrect assertions (foils) - more closely resembled human-crafted items in terms of difficulty and discrimination than those produced by ChatGPT.
comment: This is a pre-print version of a paper to appear in AIED2025. The camera-ready version is available at https://link.springer.com/chapter/10.1007/978-3-031-99264-3_16
♻ ☆ Large Language Models Still Exhibit Bias in Long Text ACL
Existing fairness benchmarks for large language models (LLMs) primarily focus on simple tasks, such as multiple-choice questions, overlooking biases that may arise in more complex scenarios like long-text generation. To address this gap, we introduce the Long Text Fairness Test (LTF-TEST), a framework that evaluates biases in LLMs through essay-style prompts. LTF-TEST covers 14 topics and 10 demographic axes, including gender and race, resulting in 11,948 samples. By assessing both model responses and the reasoning behind them, LTF-TEST uncovers subtle biases that are difficult to detect in simple responses. In our evaluation of five recent LLMs, including GPT-4o and LLaMa3, we identify two key patterns of bias. First, these models frequently favor certain demographic groups in their responses. Second, they show excessive sensitivity toward traditionally disadvantaged groups, often providing overly protective responses while neglecting others. To mitigate these biases, we propose FT-REGARD, a finetuning approach that pairs biased prompts with neutral responses. FT-REGARD reduces gender bias by 34.6% and improves performance by 1.4 percentage points on the BBQ benchmark, offering a promising approach to addressing biases in long-text generation tasks.
comment: Accepted by ACL, code and models are available at https://github.com/WonjeJeung/LTF-TEST
♻ ☆ Data Processing for the OpenGPT-X Model Family
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final filtered data. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
♻ ☆ JEPA4Rec: Learning Effective Language Representations for Sequential Recommendation via Joint Embedding Predictive Architecture
Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.
♻ ☆ Using Sentiment Analysis to Investigate Peer Feedback by Native and Non-Native English Speakers
Graduate-level CS programs in the U.S. increasingly enroll international students, with 60.2 percent of master's degrees in 2023 awarded to non-U.S. students. Many of these students take online courses, where peer feedback is used to engage students and improve pedagogy in a scalable manner. Since these courses are conducted in English, many students study in a language other than their first. This paper examines how native versus non-native English speaker status affects three metrics of peer feedback experience in online U.S.-based computing courses. Using the Twitter-roBERTa-based model, we analyze the sentiment of peer reviews written by and to a random sample of 500 students. We then relate sentiment scores and peer feedback ratings to students' language background. Results show that native English speakers rate feedback less favorably, while non-native speakers write more positively but receive less positive sentiment in return. When controlling for sex and age, significant interactions emerge, suggesting that language background plays a modest but complex role in shaping peer feedback experiences.
♻ ☆ LLMs are Single-threaded Reasoners: Demystifying the Working Mechanism of Soft Thinking
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 11 pages, 7 figures, working in progress
♻ ☆ DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search ICLR 2025
Enhancing the capability of large language models (LLMs) in reasoning has gained significant attention in recent years. Previous studies have demonstrated the effectiveness of various prompting strategies in aiding LLMs in reasoning (called "reasoning actions"), such as step-by-step thinking, reflecting before answering, solving with programs, and their combinations. However, these approaches often applied static, predefined reasoning actions uniformly to all questions, without considering the specific characteristics of each question or the capability of the task-solving LLM. In this paper, we propose DOTS, an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search, tailored to the specific characteristics of each question and the inherent capability of the task-solving LLM. Our approach involves three key steps: i) defining atomic reasoning action modules that can be composed into various reasoning action trajectories; ii) searching for the optimal action trajectory for each training question through iterative exploration and evaluation for the specific task-solving LLM; and iii) using the collected optimal trajectories to train an LLM to plan for the reasoning trajectories of unseen questions. In particular, we propose two learning paradigms, i.e., fine-tuning an external LLM as a planner to guide the task-solving LLM, or directly fine-tuning the task-solving LLM with an internalized capability for reasoning actions planning. Our experiments across eight reasoning tasks show that our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach. Further analysis reveals that our method enables LLMs to adjust their computation based on problem complexity, allocating deeper thinking and reasoning to harder problems.
comment: Accepted to ICLR 2025
♻ ☆ Balancing Stylization and Truth via Disentangled Representation Steering
Generating stylized large language model (LLM) responses via representation editing is a promising way for fine-grained output control. However, there exists an inherent trade-off: imposing a distinctive style often degrades truthfulness. Existing representation editing methods, by naively injecting style signals, overlook this collateral impact and frequently contaminate the model's core truthfulness representations, resulting in reduced answer correctness. We term this phenomenon stylization-induced truthfulness collapse. We attribute this issue to latent coupling between style and truth directions in certain key attention heads, and propose StyliTruth, a mechanism that preserves stylization while keeping truthfulness intact. StyliTruth separates the style-relevant and truth-relevant subspaces in the model's representation space via an orthogonal deflation process. This decomposition enables independent control of style and truth in their own subspaces, minimizing interference. By designing adaptive, token-level steering vectors within each subspace, we dynamically and precisely control the generation process to maintain both stylistic fidelity and truthfulness. We validate our method on multiple styles and languages. Extensive experiments and analyses show that StyliTruth significantly reduces stylization-induced truthfulness collapse and outperforms existing inference-time intervention methods in balancing style adherence with truthfulness.
♻ ☆ Which Questions Improve Learning the Most? Utility Estimation of Questions with LM-based Simulations
Asking good questions is critical for comprehension and learning, yet evaluating and generating such questions remains a challenging problem. Prior work on inquisitive questions focuses on learner-generated, curiosity-driven queries and evaluates them using indirect metrics, such as salience or information gain, that do not directly capture a question's impact on actual learning outcomes. We introduce QUEST (Question Utility Estimation with Simulated Tests), a framework that uses language models to simulate learners and directly quantify the utility of a question - its contribution to exam performance. QUEST simulates a learner who asks questions and receives answers while studying a textbook chapter, then uses them to take an end-of-chapter exam. Through this simulation, the utility of each question is estimated by its direct effect on exam performance, rather than inferred indirectly based on the underlying content. To support this evaluation, we curate TEXTBOOK-EXAM, a benchmark that aligns textbook sections with end-of-section exam questions across five academic disciplines. Using QUEST, we filter for high-utility questions and fine-tune question generators via rejection sampling. Experiments show that questions generated by QUEST-trained models improve simulated test scores by over 20% compared to strong baselines that are fine-tuned using indirect metrics or leverage prompting methods. Furthermore, utility is only weakly correlated with salience and similarity to exam questions, suggesting that it captures unique signal that benefits downstream performance. QUEST offers a new outcome-driven paradigm for question evaluation and generation - one that moves beyond question-answer content toward measurable improvements in learning outcomes.
comment: 17 pages, 5 figures, 6 tables
♻ ☆ CUPID: Evaluating Personalized and Contextualized Alignment of LLMs from Interactions
Personalization of Large Language Models (LLMs) often assumes users hold static preferences that reflect globally in all tasks. In reality, humans hold dynamic preferences that change depending on the context. As users interact with an LLM in various contexts, they naturally reveal their contextual preferences, which a model must infer and apply in future contexts to ensure alignment. To assess this, we introduce CUPID, a benchmark of 756 human-curated interaction session histories between users and LLM-based chat assistants. In each interaction session, the user provides a request in a specific context and expresses their preference through multi-turn feedback. Given a new user request and prior interaction sessions, our benchmark assesses whether LLMs can infer the preference relevant to this request and generate a response that satisfies this preference. With CUPID, we evaluated 10 open and proprietary LLMs, revealing that state-of-the-art LLMs struggle to infer preferences from multi-turn interactions and fail to discern what previous context is relevant to a new request -- under 50% precision and 65% recall. Our work highlights the need to advance LLM capabilities for more contextually personalized interactions and proposes CUPID as a resource to drive these improvements.
comment: Accepted to COLM 2025. Project Website: https://cupid.kixlab.org/
♻ ☆ Can Vision Language Models Understand Mimed Actions? ACL 2025
Nonverbal communication (NVC) plays an integral role in human language, but studying NVC in general is challenging because of its broad scope and high variance in interpretation among individuals and cultures. However, mime -- the theatrical technique of suggesting intent using only gesture, expression, and movement -- is a subset of NVC that consists of explicit and embodied actions with much lower human interpretation variance. We argue that a solid understanding of mimed actions is a crucial prerequisite for vision-language models capable of interpreting and commanding more subtle aspects of NVC. Hence, we propose Mime Identification Multimodal Evaluation (MIME), a novel video-based question answering benchmark comprising of 86 mimed actions. Constructed with motion capture data, MIME consists of variations of each action with perturbations applied to the character, background, and viewpoint for evaluating recognition robustness. We find that both open-weight and API-based vision-language models perform significantly worse than humans on MIME, motivating the need for increased research for instilling more robust understanding of human gestures.
comment: ACL 2025 Findings
♻ ☆ Medal Matters: Probing LLMs' Failure Cases Through Olympic Rankings
Large language models (LLMs) have achieved remarkable success in natural language processing tasks, yet their internal knowledge structures remain poorly understood. This study examines these structures through the lens of historical Olympic medal tallies, evaluating LLMs on two tasks: (1) retrieving medal counts for specific teams and (2) identifying rankings of each team. While state-of-the-art LLMs excel in recalling medal counts, they struggle with providing rankings, highlighting a key difference between their knowledge organization and human reasoning. These findings shed light on the limitations of LLMs' internal knowledge integration and suggest directions for improvement. To facilitate further research, we release our code, dataset, and model outputs.
comment: COLM 2025 ORIGen Workshop
♻ ☆ Perception-Aware Policy Optimization for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose PAPO, a novel policy gradient algorithm that encourages the model to learn to perceive while learning to reason. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term, which can be seamlessly plugged into mainstream RLVR algorithms such as GRPO and DAPO. Notably, PAPO does not rely on additional data curation, reward models, or stronger teacher models. To further enhance the training stability of PAPO, we introduce the Double Entropy Loss, which effectively regularizes the new KL objective without compromising performance. Despite its simplicity, PAPO yields significant overall improvements of 4.4%-17.5% on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%-19.1%, on tasks with high vision dependency. We also observe a substantial reduction of 30.5% in perception errors, indicating improved perceptual capabilities with PAPO. Overall, our work introduces a deeper integration of perception-aware supervision into core learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Code and data will be made publicly available for research purposes. Project page: https://mikewangwzhl.github.io/PAPO.
♻ ☆ The SMeL Test: A simple benchmark for media literacy in language models
The internet is rife with unattributed, deliberately misleading, or otherwise untrustworthy content. Though large language models (LLMs) are often tasked with autonomous web browsing, the extent to which they have learned the simple heuristics human researchers use to navigate this noisy environment is not currently known. In this paper, we introduce the Synthetic Media Literacy Test (SMeL Test), a minimal benchmark that tests the ability of language models to actively filter out untrustworthy information in context. We benchmark a variety of commonly used instruction-tuned LLMs, including reasoning models, and find that no model consistently succeeds; while reasoning in particular is associated with higher scores, even the best API model we test hallucinates up to 70% of the time. Remarkably, larger and more capable models do not necessarily outperform their smaller counterparts. We hope our work sheds more light on this important form of hallucination and guides the development of new methods to combat it.
♻ ☆ GM-PRM: A Generative Multimodal Process Reward Model for Multimodal Mathematical Reasoning
Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities but often struggle with complex, multi-step mathematical reasoning, where minor errors in visual perception or logical deduction can lead to complete failure. While Process Reward Models (PRMs) offer step-by-step supervision, existing multimodal PRMs are limited to being binary verifiers that can identify but not correct errors, offering little explanatory power. To address these deficiencies, we introduce the Generative Multimodal Process Reward Model (GM-PRM), a novel paradigm that transforms the PRM from a passive judge into an active reasoning collaborator. Instead of a simple scalar score, GM-PRM provides a fine-grained, interpretable analysis of each reasoning step, evaluating its step intent, visual alignment, and logical soundness. More critically, GM-PRM is trained to generate a corrected version of the first erroneous step it identifies. This unique corrective capability enables our new test-time inference strategy, Refined Best-of-N (Refined-BoN). This framework actively enhances solution quality by using the PRM's generated correction to guide the policy model toward a more promising reasoning trajectory, thereby improving the diversity and correctness of the solution pool. We demonstrate that GM-PRM achieves state-of-the-art results on multiple multimodal math benchmarks, significantly boosting policy model performance with remarkable data efficiency, requiring only a 20K-sample training dataset. Our code will be released upon acceptance.
♻ ☆ Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems
AI-augmented data processing systems (DPSs) integrate large language models (LLMs) into query pipelines, allowing powerful semantic operations on structured and unstructured data. However, the reliability (a.k.a. trust) of these systems is fundamentally challenged by the potential for LLMs to produce errors, limiting their adoption in critical domains. To help address this reliability bottleneck, we introduce semantic integrity constraints (SICs) -- a declarative abstraction for specifying and enforcing correctness conditions over LLM outputs in semantic queries. SICs generalize traditional database integrity constraints to semantic settings, supporting common types of constraints, such as grounding, soundness, and exclusion, with both reactive and proactive enforcement strategies. We argue that SICs provide a foundation for building reliable and auditable AI-augmented data systems. Specifically, we present a system design for integrating SICs into query planning and runtime execution and discuss its realization in AI-augmented DPSs. To guide and evaluate our vision, we outline several design goals -- covering criteria around expressiveness, runtime semantics, integration, performance, and enterprise-scale applicability -- and discuss how our framework addresses each, along with open research challenges.
♻ ☆ Distilling Reasoning Ability from Large Language Models with Adaptive Thinking
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks by allowing them to imitate the reasoning procedure of large language models (LLM) beyond simply predicting the answers. Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer. This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale. Therefore, we propose a robust post-thinking mechanism to generate answers before rationale. Thanks to this answer-first setting, 1) the answer can escape from the adverse effects caused by minor errors in the rationale; 2) the rationale serves as an error amplifier to the answer, which makes the SLM focus on learning hard samples; 3) the inferring efficiency can also benefit from the setting since users can stop the generation right after answers are outputted when inference is conducted. However, although the post-thinking mechanism brings many advantages and improves the overall performance of SLM on specific tasks, it may lose the ability to think about the questions and decompose complex questions into simple sub-questions compared to pre-thinking mechanism. Therefore, a plug-and-play adaptive-thinking mechanism is proposed with the aid of the soft prompt tuning to integrate the merits of the pre-thinking mechanism and post-thinking mechanism, in which a perception module is introduced to adaptively prompt SLM answer or think first based on perceiving the complexity of the questions. Extensive experiments are conducted across 12 reasoning tasks and 2 representative language models to demonstrate the effectiveness of the proposed mechanism.
comment: This work has been accepted by IEEE for publication. Early access in IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ R2Vul: Learning to Reason about Software Vulnerabilities with Reinforcement Learning and Structured Reasoning Distillation
Large language models (LLMs) have shown promising performance in software vulnerability detection, yet their reasoning capabilities remain unreliable. We propose R2Vul, a method that combines reinforcement learning from AI feedback (RLAIF) and structured reasoning distillation to teach small code LLMs to detect vulnerabilities while generating security-aware explanations. Unlike prior chain-of-thought and instruction tuning approaches, R2Vul rewards well-founded over deceptively plausible vulnerability explanations through RLAIF, which results in more precise detection and high-quality reasoning generation. To support RLAIF, we construct the first multilingual preference dataset for vulnerability detection, comprising 18,000 high-quality samples in C\#, JavaScript, Java, Python, and C. We evaluate R2Vul across five programming languages and against four static analysis tools, eight state-of-the-art LLM-based baselines, and various fine-tuning approaches. Our results demonstrate that a 1.5B R2Vul model exceeds the performance of its 32B teacher model and leading commercial LLMs such as Claude-4-Opus. Furthermore, we introduce a lightweight calibration step that reduces false positive rates under varying imbalanced data distributions. Finally, through qualitative analysis, we show that both LLM and human evaluators consistently rank R2Vul model's reasoning higher than other reasoning-based baselines.
♻ ☆ MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models
Large language models (LLMs) are starting to complement traditional information seeking mechanisms such as web search. LLM-powered chatbots like ChatGPT are gaining prominence among the general public. AI chatbots are also increasingly producing content on social media platforms. However, LLMs are also prone to hallucinations, generating plausible yet factually incorrect or fabricated information. This becomes a critical problem when laypeople start seeking information about sensitive issues such as healthcare. Existing works in LLM hallucinations in the medical domain mainly focus on testing the medical knowledge of LLMs through standardized medical exam questions which are often well-defined and clear-cut with definitive answers. However, these approaches may not fully capture how these LLMs perform during real-world interactions with patients. This work conducts a pioneering study on hallucinations in LLM-generated responses to real-world healthcare queries from patients.We introduce MedHalu, a novel medical hallucination benchmark featuring diverse health-related topics and hallucinated responses from LLMs, with detailed annotation of the hallucination types and text spans. We also propose MedHaluDetect, a comprehensive framework for evaluating LLMs' abilities to detect hallucinations. Furthermore, we study the vulnerability to medical hallucinations among three groups -- medical experts, LLMs, and laypeople. Notably, LLMs significantly underperform human experts and, in some cases, even laypeople in detecting medical hallucinations. To improve hallucination detection, we propose an expert-in-the-loop approach that integrates expert reasoning into LLM inputs, significantly improving hallucination detection for all LLMs, including a 6.3% macro-F1 improvement for GPT-4.
comment: Accepted at ICWSM2026
♻ ☆ Rationale-guided Prompting for Knowledge-based Visual Question Answering
Recently, Large Language Models (LLMs) have been used for knowledge-based Visual Question Answering (VQA). Despite the encouraging results of previous studies, prior methods prompt LLMs to predict answers directly, neglecting intermediate thought processes. We argue that prior methods do not sufficiently activate the capacities of LLMs. We propose a framework called PLRH that Prompts LLMs with Rationale Heuristics for knowledge-based VQA. The PLRH prompts LLMs with Chain of Thought (CoT) to generate rationale heuristics, i.e., intermediate thought processes, and then leverages the rationale heuristics to inspire LLMs to predict answers. Experiments show that our approach outperforms the existing baselines by more than 2.2 and 2.1 on OK-VQA and A-OKVQA, respectively.
comment: We would like to withdraw this submission due to ongoing internal review and coordination among the author team. Upon the supervisor's recommendation, we have decided to delay public dissemination until the manuscript undergoes further refinement and aligns with our intended academic trajectory
♻ ☆ Multi-Agents Based on Large Language Models for Knowledge-based Visual Question Answering
Large Language Models (LLMs) have achieved impressive results in knowledge-based Visual Question Answering (VQA). However existing methods still have challenges: the inability to use external tools autonomously, and the inability to work in teams. Humans tend to know whether they need to use external tools when they encounter a new question, e.g., they tend to be able to give a direct answer to a familiar question, whereas they tend to use tools such as search engines when they encounter an unfamiliar question. In addition, humans also tend to collaborate and discuss with others to get better answers. Inspired by this, we propose the multi-agent voting framework. We design three LLM-based agents that simulate different levels of staff in a team, and assign the available tools according to the levels. Each agent provides the corresponding answer, and finally all the answers provided by the agents are voted to get the final answer. Experiments on OK-VQA and A-OKVQA show that our approach outperforms other baselines by 2.2 and 1.0, respectively.
comment: We would like to withdraw this submission due to ongoing internal review and coordination among the author team. Upon the supervisor's recommendation, we have decided to delay public dissemination until the manuscript undergoes further refinement and aligns with our intended academic trajectory
♻ ☆ Probabilities of Chat LLMs Are Miscalibrated but Still Predict Correctness on Multiple-Choice Q&A
We study 15 large language models (LLMs) fine-tuned for chat and find that their maximum softmax probabilities (MSPs) are consistently miscalibrated on multiple-choice Q&A. However, those MSPs might still encode useful uncertainty information. Specifically, we hypothesized that wrong answers would be associated with smaller MSPs compared to correct answers. Via rigorous statistical testing, we show that this hypothesis holds for models which perform well on the underlying Q&A task. We also find a strong direction correlation between Q&A accuracy and MSP correctness prediction, while finding no correlation between Q&A accuracy and calibration error. This suggests that within the current fine-tuning paradigm, we can expect correctness prediction but not calibration to improve as LLM capabilities progress. To demonstrate the utility of correctness prediction, we show that when models have the option to abstain, performance can be improved by selectively abstaining based on the MSP of the initial model response, using only a small amount of labeled data to choose the MSP threshold.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ The Impact of Item-Writing Flaws on Difficulty and Discrimination in Item Response Theory
High-quality test items are essential for educational assessments, particularly within Item Response Theory (IRT). Traditional validation methods rely on resource-intensive pilot testing to estimate item difficulty and discrimination. More recently, Item-Writing Flaw (IWF) rubrics emerged as a domain-general approach for evaluating test items based on textual features. This method offers a scalable, pre-deployment evaluation without requiring student data, but its predictive validity concerning empirical IRT parameters is underexplored. To address this gap, we conducted a study involving 7,126 multiple-choice questions across various STEM subjects (physical science, mathematics, and life/earth sciences). Using an automated approach, we annotated each question with a 19-criteria IWF rubric and studied relationships to data-driven IRT parameters. Our analysis revealed statistically significant links between the number of IWFs and IRT difficulty and discrimination parameters, particularly in life/earth and physical science domains. We further observed how specific IWF criteria can impact item quality more and less severely (e.g., negative wording vs. implausible distractors) and how they might make a question more or less challenging. Overall, our findings establish automated IWF analysis as a valuable supplement to traditional validation, providing an efficient method for initial item screening, particularly for flagging low-difficulty MCQs. Our findings show the need for further research on domain-general evaluation rubrics and algorithms that understand domain-specific content for robust item validation.
comment: Added Acknowledgments
♻ ☆ DEL: Context-Aware Dynamic Exit Layer for Efficient Self-Speculative Decoding
Speculative Decoding (SD) is a widely used approach to accelerate the inference of large language models (LLMs) without reducing generation quality. It operates by first using a compact model to draft multiple tokens efficiently, followed by parallel verification using the target LLM. This approach leads to faster inference compared to auto-regressive decoding. While there are multiple approaches to create a draft model, one promising approach is to use early-exit methods. These methods draft candidate tokens by using a subset of layers of the primary model and applying the remaining layers for verification, allowing a single model to handle both drafting and verification. While this technique reduces memory usage and computational cost, its performance relies on the choice of the exit layer for drafting and the number of tokens drafted (speculation length) in each SD round. Prior works use hyperparameter exploration to statically select these values. However, our evaluations show that these hyperparameter values are task-specific, and even within a task they are dependent on the current sequence context. We introduce DEL (Dynamic Exit Layer), a plug-and-play method that adaptively selects the exit layer and speculation length during inference. DEL dynamically tracks the token acceptance rate if the tokens are drafted at each layer of an LLM and uses that knowledge to heuristically select the optimal exit layer and speculation length. Our experiments across a broad range of models and downstream tasks show that DEL achieves overall speedups of $2.16\times$$\sim$$2.62\times$ over vanilla auto-regressive decoding and improves upon state-of-the-art SD methods, which peak at $2.43\times$, by up to $0.19\times$. The code is available at https://github.com/hoenza/DEL.
♻ ☆ Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
♻ ☆ Explainable Recommendation with Simulated Human Feedback
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach.
♻ ☆ Single-Pass Document Scanning for Question Answering
Handling extremely large documents for question answering is challenging: chunk-based embedding methods often lose track of important global context, while full-context transformers can be prohibitively expensive for hundreds of thousands of tokens. We propose a single-pass document scanning approach that processes the entire text in linear time, preserving global coherence while deciding which sentences are most relevant to the query. On 41 QA benchmarks, our single-pass scanner consistently outperforms chunk-based embedding methods and competes with large language models at a fraction of the computational cost. By conditioning on the entire preceding context without chunk breaks, the method preserves global coherence, which is especially important for long documents. Overall, single-pass document scanning offers a simple solution for question answering over massive text. All code, datasets, and model checkpoints are available at https://github.com/MambaRetriever/MambaRetriever
comment: Published at Conference on Language Modeling (COLM), 2025
♻ ☆ Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
comment: 29 pages, 9 figures, 15 tables
♻ ☆ ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models
Speech language models refer to language models with speech processing and understanding capabilities. One key desirable capability for speech language models is the ability to capture the intricate interdependency between content and prosody. The existing mainstream paradigm of training speech language models, which converts speech into discrete tokens before feeding them into LLMs, is sub-optimal in learning prosody information -- we find that the resulting LLMs do not exhibit obvious emerging prosody processing capabilities via pre-training alone. To overcome this, we propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody. Each speech utterance is first transcribed into text, followed by a sequence of word-level prosody tokens. Compared with conventional speech tokenization schemes, the proposed tokenization scheme retains more complete prosody information, and is more understandable to text-based LLMs. We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone, ranging from harnessing the prosody nuances in generated speech, such as contrastive focus, understanding emotion and stress in an utterance, to maintaining prosody consistency in long contexts.
♻ ☆ OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs
Large Language Models (LLMs) have transformed software development by enabling code generation, automated debugging, and complex reasoning. However, their continued advancement is constrained by the scarcity of high-quality, publicly available supervised fine-tuning (SFT) datasets tailored for coding tasks. To bridge this gap, we introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples. Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments. We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset. Comprehensive evaluations on popular benchmarks (HumanEval, MBPP, LiveCodeBench, and BigCodeBench) demonstrate substantial performance improvements achieved by SFT with OpenCodeInstruct. We also present a detailed methodology encompassing seed data curation, synthetic instruction and solution generation, and filtering.
comment: Work in progress
♻ ☆ OpenCodeReasoning: Advancing Data Distillation for Competitive Coding
Since the advent of reasoning-based large language models, many have found great success from distilling reasoning capabilities into student models. Such techniques have significantly bridged the gap between reasoning and standard LLMs on coding tasks. Despite this, much of the progress on distilling reasoning models remains locked behind proprietary datasets or lacks details on data curation, filtering and subsequent training. To address this, we construct a superior supervised fine-tuning (SFT) dataset that we use to achieve state-of-the-art coding capability results in models of various sizes. Our distilled models use only SFT to achieve 61.8% on LiveCodeBench and 24.6% on CodeContests, surpassing alternatives trained with reinforcement learning. We then perform analysis on the data sources used to construct our dataset, the impact of code execution filtering, and the importance of instruction/solution diversity. We observe that execution filtering negatively affected benchmark accuracy, leading us to prioritize instruction diversity over solution correctness. Finally, we also analyze the token efficiency and reasoning patterns utilized by these models. We will open-source these datasets and distilled models to the community.
comment: Published at COLM 2025
♻ ☆ INS-MMBench: A Comprehensive Benchmark for Evaluating LVLMs' Performance in Insurance ICCV 2025
Large Vision-Language Models (LVLMs) and Multimodal Large Language Models (MLLMs) have demonstrated outstanding performance in various general multimodal applications and have shown increasing promise in specialized domains. However, their potential in the insurance domain-characterized by diverse application scenarios and rich multimodal data-remains largely underexplored. To date, there is no systematic review of multimodal tasks, nor a benchmark specifically designed to assess the capabilities of LVLMs in insurance. This gap hinders the development of LVLMs within the insurance industry. This study systematically reviews and categorizes multimodal tasks for 4 representative types of insurance: auto, property, health, and agricultural. We introduce INS-MMBench, the first hierarchical benchmark tailored for the insurance domain. INS-MMBench encompasses 22 fundamental tasks, 12 meta-tasks and 5 scenario tasks, enabling a comprehensive and progressive assessment from basic capabilities to real-world use cases. We benchmark 11 leading LVLMs, including closed-source models such as GPT-4o and open-source models like LLaVA. Our evaluation validates the effectiveness of INS-MMBench and offers detailed insights into the strengths and limitations of current LVLMs on a variety of insurance-related multimodal tasks. We hope that INS-MMBench will accelerate the integration of LVLMs into the insurance industry and foster interdisciplinary research. Our dataset and evaluation code are available at https://github.com/FDU-INS/INS-MMBench.
comment: To appear in the International Conference on Computer Vision, ICCV 2025
♻ ☆ Towards Pareto Optimal Throughput in Small Language Model Serving
Large language models (LLMs) have revolutionized the state-of-the-art of many different natural language processing tasks. Although serving LLMs is computationally and memory demanding, the rise of Small Language Models (SLMs) offers new opportunities for resource-constrained users, who now are able to serve small models with cutting-edge performance. In this paper, we present a set of experiments designed to benchmark SLM inference at performance and energy levels. Our analysis provides a new perspective in serving, highlighting that the small memory footprint of SLMs allows for reaching the Pareto-optimal throughput within the resource capacity of a single accelerator. In this regard, we present an initial set of findings demonstrating how model replication can effectively improve resource utilization for serving SLMs.
comment: Revised version of the paper published at EuroMLSys'24, fix figure 6 and 7
♻ ☆ Benchmarking LLMs on the Semantic Overlap Summarization Task
Semantic Overlap Summarization (SOS) is a constrained multi-document summarization task, where the constraint is to capture the common/overlapping information between two alternative narratives. In this work, we perform a benchmarking study of popular Large Language Models (LLMs) exclusively on the SOS task. Additionally, we introduce the PrivacyPolicyPairs (3P) dataset to expand the space of SOS benchmarks in terms of quantity and variety. This dataset provides 135 high-quality SOS data samples sourced from privacy policy documents. We then use a standard prompting taxonomy called TELeR to create and evaluate 905,216 distinct LLM-generated summaries over two SOS datasets from different domains, and we further conduct human evaluation on a subset of 540 samples. We conclude the paper by analyzing models' performances and the reliability of automatic evaluation. The code and datasets used to conduct this study are available at https://anonymous.4open.science/r/llm_eval-E16D.
♻ ☆ No Universal Prompt: Unifying Reasoning through Adaptive Prompting for Temporal Table Reasoning
Temporal Table Reasoning is a critical challenge for Large Language Models (LLMs), requiring effective reasoning to extract relevant insights. Despite existence of multiple prompting methods, their impact on table reasoning remains largely unexplored. Furthermore, model performance varies drastically across different table and context structures, making it difficult to determine an optimal approach. This work investigates multiple prompting technique on diverse table types to determine that performance depends on factors such as entity type, table structure, requirement of additional context and question complexity, with "NO" single method consistently outperforming others. To address this, we introduce SEAR, an adaptive prompting framework inspired by human reasoning that dynamically adjusts to context and integrates structured reasoning. Our results demonstrate that SEAR achieves superior performance across all table types compared to baseline prompting techniques. Additionally, we explore the impact of table structure refactoring, finding that a unified representation enhances model reasoning.
comment: 23 pages, 21 Tables, 10 Figures
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of large language models (LLMs) and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.
♻ ☆ Code-as-Symbolic-Planner: Foundation Model-Based Robot Planning via Symbolic Code Generation
Recent works have shown great potentials of Large Language Models (LLMs) in robot task and motion planning (TAMP). Current LLM approaches generate text- or code-based reasoning chains with sub-goals and action plans. However, they do not fully leverage LLMs' symbolic computing and code generation capabilities. Many robot TAMP tasks involve complex optimization under multiple constraints, where pure textual reasoning is insufficient. While augmenting LLMs with predefined solvers and planners improves performance, it lacks generalization across tasks. Given LLMs' growing coding proficiency, we enhance their TAMP capabilities by steering them to generate code as symbolic planners for optimization and constraint verification. Unlike prior work that uses code to interface with robot action modules, we steer LLMs to generate code as solvers, planners, and checkers for TAMP tasks requiring symbolic computing, while still leveraging textual reasoning to incorporate common sense. With a multi-round guidance and answer evolution framework, the proposed Code-as-Symbolic-Planner improves success rates by average 24.1\% over best baseline methods across seven typical TAMP tasks and three popular LLMs. Code-as-Symbolic-Planner shows strong effectiveness and generalizability across discrete and continuous environments, 2D/3D simulations and real-world settings, as well as single- and multi-robot tasks with diverse requirements. See our project website https://yongchao98.github.io/Code-Symbol-Planner/ for prompts, videos, and code.
comment: 7 pages, 7 figures, 3 tables
♻ ☆ No Query, No Access
Textual adversarial attacks mislead NLP models, including Large Language Models (LLMs), by subtly modifying text. While effective, existing attacks often require knowledge of the victim model, extensive queries, or access to training data, limiting real-world feasibility. To overcome these constraints, we introduce the \textbf{Victim Data-based Adversarial Attack (VDBA)}, which operates using only victim texts. To prevent access to the victim model, we create a shadow dataset with publicly available pre-trained models and clustering methods as a foundation for developing substitute models. To address the low attack success rate (ASR) due to insufficient information feedback, we propose the hierarchical substitution model design, generating substitute models to mitigate the failure of a single substitute model at the decision boundary. Concurrently, we use diverse adversarial example generation, employing various attack methods to generate and select the adversarial example with better similarity and attack effectiveness. Experiments on the Emotion and SST5 datasets show that VDBA outperforms state-of-the-art methods, achieving an ASR improvement of 52.08\% while significantly reducing attack queries to 0. More importantly, we discover that VDBA poses a significant threat to LLMs such as Qwen2 and the GPT family, and achieves the highest ASR of 45.99% even without access to the API, confirming that advanced NLP models still face serious security risks. Our codes can be found at https://anonymous.4open.science/r/VDBA-Victim-Data-based-Adversarial-Attack-36EC/
Information Retrieval 31
☆ KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.
☆ RankArena: A Unified Platform for Evaluating Retrieval, Reranking and RAG with Human and LLM Feedback CIKM 2025
Evaluating the quality of retrieval-augmented generation (RAG) and document reranking systems remains challenging due to the lack of scalable, user-centric, and multi-perspective evaluation tools. We introduce RankArena, a unified platform for comparing and analysing the performance of retrieval pipelines, rerankers, and RAG systems using structured human and LLM-based feedback as well as for collecting such feedback. RankArena supports multiple evaluation modes: direct reranking visualisation, blind pairwise comparisons with human or LLM voting, supervised manual document annotation, and end-to-end RAG answer quality assessment. It captures fine-grained relevance feedback through both pairwise preferences and full-list annotations, along with auxiliary metadata such as movement metrics, annotation time, and quality ratings. The platform also integrates LLM-as-a-judge evaluation, enabling comparison between model-generated rankings and human ground truth annotations. All interactions are stored as structured evaluation datasets that can be used to train rerankers, reward models, judgment agents, or retrieval strategy selectors. Our platform is publicly available at https://rankarena.ngrok.io/, and the Demo video is provided https://youtu.be/jIYAP4PaSSI.
comment: Accept at CIKM 2025
☆ On the Reliability of Sampling Strategies in Offline Recommender Evaluation RecSys 2025
Offline evaluation plays a central role in benchmarking recommender systems when online testing is impractical or risky. However, it is susceptible to two key sources of bias: exposure bias, where users only interact with items they are shown, and sampling bias, introduced when evaluation is performed on a subset of logged items rather than the full catalog. While prior work has proposed methods to mitigate sampling bias, these are typically assessed on fixed logged datasets rather than for their ability to support reliable model comparisons under varying exposure conditions or relative to true user preferences. In this paper, we investigate how different combinations of logging and sampling choices affect the reliability of offline evaluation. Using a fully observed dataset as ground truth, we systematically simulate diverse exposure biases and assess the reliability of common sampling strategies along four dimensions: sampling resolution (recommender model separability), fidelity (agreement with full evaluation), robustness (stability under exposure bias), and predictive power (alignment with ground truth). Our findings highlight when and how sampling distorts evaluation outcomes and offer practical guidance for selecting strategies that yield faithful and robust offline comparisons.
comment: Accepted to RecSys 2025
☆ Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions
Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types. However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations. In this paper, we propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions: Comparative Efficiency, Recommendation Tasks, Recommendation Stages, and Multimodal Data Integration. We benchmark a set of reproducible multimodal models against strong traditional baselines and evaluate their performance on different platforms. Our findings show that multimodal data is particularly beneficial in sparse interaction scenarios and during the recall stage of recommendation pipelines. We also observe that the importance of each modality is task-specific, where text features are more useful in e-commerce and visual features are more effective in short-video recommendations. Additionally, we explore different integration strategies and model sizes, finding that Ensemble-Based Learning outperforms Fusion-Based Learning, and that larger models do not necessarily deliver better results. To deepen our understanding, we include case studies and review findings from other recommendation domains. Our work provides practical insights for building efficient and effective multimodal recommendation systems, emphasizing the need for thoughtful modality selection, integration strategies, and model design.
☆ Multi-Modal Multi-Behavior Sequential Recommendation with Conditional Diffusion-Based Feature Denoising SIGIR 2025
The sequential recommendation system utilizes historical user interactions to predict preferences. Effectively integrating diverse user behavior patterns with rich multimodal information of items to enhance the accuracy of sequential recommendations is an emerging and challenging research direction. This paper focuses on the problem of multi-modal multi-behavior sequential recommendation, aiming to address the following challenges: (1) the lack of effective characterization of modal preferences across different behaviors, as user attention to different item modalities varies depending on the behavior; (2) the difficulty of effectively mitigating implicit noise in user behavior, such as unintended actions like accidental clicks; (3) the inability to handle modality noise in multi-modal representations, which further impacts the accurate modeling of user preferences. To tackle these issues, we propose a novel Multi-Modal Multi-Behavior Sequential Recommendation model (M$^3$BSR). This model first removes noise in multi-modal representations using a Conditional Diffusion Modality Denoising Layer. Subsequently, it utilizes deep behavioral information to guide the denoising of shallow behavioral data, thereby alleviating the impact of noise in implicit feedback through Conditional Diffusion Behavior Denoising. Finally, by introducing a Multi-Expert Interest Extraction Layer, M$^3$BSR explicitly models the common and specific interests across behaviors and modalities to enhance recommendation performance. Experimental results indicate that M$^3$BSR significantly outperforms existing state-of-the-art methods on benchmark datasets.
comment: SIGIR 2025
☆ Difference Views for Visual Graph Query Building
Knowledge Graphs (KGs) contain vast amounts of linked resources that encode knowledge in various domains, which can be queried and searched for using specialized languages like SPARQL, a query language developed to query KGs. Existing visual query builders enable non-expert users to construct SPARQL queries and utilize the knowledge contained in these graphs. Query building is, however, an iterative and, often, visual process where the question of the user can change and differ throughout the process, especially for explorative search. Our visual querying interface communicates these change between iterative steps in the query building process using graph differences to contrast the changes and the evolution in the graph query. We also enable users to formulate their evolving information needs using a natural language interface directly integrated into the difference query view. We, furthermore, communicate the change in results in the result view by contrasting the differences in both result distribution and individual instances of the prototype graph and demonstrate the system's applicability through case studies on different ontologies and usage scenarios, illustrating how our system fosters, both, data exploration and analysis of domain-specific graphs.
comment: 5 pages, 6 figures, preparing for submission to Semantic Web Conferences
☆ FIRE: Faithful Interpretable Recommendation Explanations
Natural language explanations in recommender systems are often framed as a review generation task, leveraging user reviews as ground-truth supervision. While convenient, this approach conflates a user's opinion with the system's reasoning, leading to explanations that may be fluent but fail to reflect the true logic behind recommendations. In this work, we revisit the core objective of explainable recommendation: to transparently communicate why an item is recommended by linking user needs to relevant item features. Through a comprehensive analysis of existing methods across multiple benchmark datasets, we identify common limitations-explanations that are weakly aligned with model predictions, vague or inaccurate in identifying user intents, and overly repetitive or generic. To overcome these challenges, we propose FIRE, a lightweight and interpretable framework that combines SHAP-based feature attribution with structured, prompt-driven language generation. FIRE produces faithful, diverse, and user-aligned explanations, grounded in the actual decision-making process of the model. Our results demonstrate that FIRE not only achieves competitive recommendation accuracy but also significantly improves explanation quality along critical dimensions such as alignment, structure, and faithfulness. This work highlights the need to move beyond the review-as-explanation paradigm and toward explanation methods that are both accountable and interpretable.
☆ Bidding-Aware Retrieval for Multi-Stage Consistency in Online Advertising
Online advertising systems typically use a cascaded architecture to manage massive requests and candidate volumes, where the ranking stages allocate traffic based on eCPM (predicted CTR $\times$ Bid). With the increasing popularity of auto-bidding strategies, the inconsistency between the computationally sensitive retrieval stage and the ranking stages becomes more pronounced, as the former cannot access precise, real-time bids for the vast ad corpus. This discrepancy leads to sub-optimal platform revenue and advertiser outcomes. To tackle this problem, we propose Bidding-Aware Retrieval (BAR), a model-based retrieval framework that addresses multi-stage inconsistency by incorporating ad bid value into the retrieval scoring function. The core innovation is Bidding-Aware Modeling, incorporating bid signals through monotonicity-constrained learning and multi-task distillation to ensure economically coherent representations, while Asynchronous Near-Line Inference enables real-time updates to the embedding for market responsiveness. Furthermore, the Task-Attentive Refinement module selectively enhances feature interactions to disentangle user interest and commercial value signals. Extensive offline experiments and full-scale deployment across Alibaba's display advertising platform validated BAR's efficacy: 4.32% platform revenue increase with 22.2% impression lift for positively-operated advertisements.
☆ Balancing Accuracy and Novelty with Sub-Item Popularity
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
☆ Tool Graph Retriever: Exploring Dependency Graph-based Tool Retrieval for Large Language Models
With the remarkable advancement of AI agents, the number of their equipped tools is increasing rapidly. However, integrating all tool information into the limited model context becomes impractical, highlighting the need for efficient tool retrieval methods. In this regard, dominant methods primarily rely on semantic similarities between tool descriptions and user queries to retrieve relevant tools. However, they often consider each tool independently, overlooking dependencies between tools, which may lead to the omission of prerequisite tools for successful task execution. To deal with this defect, in this paper, we propose Tool Graph Retriever (TGR), which exploits the dependencies among tools to learn better tool representations for retrieval. First, we construct a dataset termed TDI300K to train a discriminator for identifying tool dependencies. Then, we represent all candidate tools as a tool dependency graph and use graph convolution to integrate the dependencies into their representations. Finally, these updated tool representations are employed for online retrieval. Experimental results on several commonly used datasets show that our TGR can bring a performance improvement to existing dominant methods, achieving SOTA performance. Moreover, in-depth analyses also verify the importance of tool dependencies and the effectiveness of our TGR.
☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
☆ Community-Aware Social Community Recommendation CIKM 2025
Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
comment: This is the technical report of the paper "Community-Aware Social Community Recommendation" accepted by CIKM 2025
☆ An End-to-End Multi-objective Ensemble Ranking Framework for Video Recommendation
We propose a novel End-to-end Multi-objective Ensemble Ranking framework (EMER) for the multi-objective ensemble ranking module, which is the most critical component of the short video recommendation system. EMER enhances personalization by replacing manually-designed heuristic formulas with an end-to-end modeling paradigm. EMER introduces a meticulously designed loss function to address the fundamental challenge of defining effective supervision for ensemble ranking, where no single ground-truth signal can fully capture user satisfaction. Moreover, EMER introduces novel sample organization method and transformer-based network architecture to capture the comparative relationships among candidates, which are critical for effective ranking. Additionally, we have proposed an offline-online consistent evaluation system to enhance the efficiency of offline model optimization, which is an established yet persistent challenge within the multi-objective ranking domain in industry. Abundant empirical tests are conducted on a real industrial dataset, and the results well demonstrate the effectiveness of our proposed framework. In addition, our framework has been deployed in the primary scenarios of Kuaishou, a short video recommendation platform with hundreds of millions of daily active users, achieving a 1.39% increase in overall App Stay Time and a 0.196% increase in 7-day user Lifetime(LT7), which are substantial improvements.
☆ Align-for-Fusion: Harmonizing Triple Preferences via Dual-oriented Diffusion for Cross-domain Sequential Recommendation
Personalized sequential recommendation aims to predict appropriate items for users based on their behavioral sequences. To alleviate data sparsity and interest drift issues, conventional approaches typically incorporate auxiliary behaviors from other domains via cross-domain transition. However, existing cross-domain sequential recommendation (CDSR) methods often follow an align-then-fusion paradigm that performs representation-level alignment across multiple domains and combines them mechanically for recommendation, overlooking the fine-grained fusion of domain-specific preferences. Inspired by recent advances in diffusion models (DMs) for distribution matching, we propose an align-for-fusion framework for CDSR to harmonize triple preferences via dual-oriented DMs, termed HorizonRec. Specifically, we investigate the uncertainty injection of DMs and identify stochastic noise as a key source of instability in existing DM-based recommenders. To address this, we introduce a mixed-conditioned distribution retrieval strategy that leverages distributions retrieved from users' authentic behavioral logic as semantic bridges across domains, enabling consistent multi-domain preference modeling. Furthermore, we propose a dual-oriented preference diffusion method to suppress potential noise and emphasize target-relevant interests during multi-domain user representation fusion. Extensive experiments on four CDSR datasets from two distinct platforms demonstrate the effectiveness and robustness of HorizonRec in fine-grained triple-domain preference fusion.
☆ Data-Aware Socratic Query Refinement in Database Systems
In this paper, we propose Data-Aware Socratic Guidance (DASG), a dialogue-based query enhancement framework that embeds \linebreak interactive clarification as a first-class operator within database systems to resolve ambiguity in natural language queries. DASG treats dialogue as an optimization decision, asking clarifying questions only when the expected execution cost reduction exceeds the interaction overhead. The system quantifies ambiguity through linguistic fuzziness, schema grounding confidence, and projected costs across relational and vector backends. Our algorithm selects the optimal clarifications by combining semantic relevance, catalog-based information gain, and potential cost reduction. We evaluate our proposed framework on three datasets. The results show that DASG demonstrates improved query precision while maintaining efficiency, establishing a cooperative analytics paradigm where systems actively participate in query formulation rather than passively translating user requests.
☆ A Metric for MLLM Alignment in Large-scale Recommendation
Multimodal recommendation has emerged as a critical technique in modern recommender systems, leveraging content representations from advanced multimodal large language models (MLLMs). To ensure these representations are well-adapted, alignment with the recommender system is essential. However, evaluating the alignment of MLLMs for recommendation presents significant challenges due to three key issues: (1) static benchmarks are inaccurate because of the dynamism in real-world applications, (2) evaluations with online system, while accurate, are prohibitively expensive at scale, and (3) conventional metrics fail to provide actionable insights when learned representations underperform. To address these challenges, we propose the Leakage Impact Score (LIS), a novel metric for multimodal recommendation. Rather than directly assessing MLLMs, LIS efficiently measures the upper bound of preference data. We also share practical insights on deploying MLLMs with LIS in real-world scenarios. Online A/B tests on both Content Feed and Display Ads of Xiaohongshu's Explore Feed production demonstrate the effectiveness of our proposed method, showing significant improvements in user spent time and advertiser value.
comment: Pre-print.Under Review
☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and too retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average Complete Recall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information in the KG provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
☆ WebWatcher: Breaking New Frontiers of Vision-Language Deep Research Agent
Web agents such as Deep Research have demonstrated superhuman cognitive abilities, capable of solving highly challenging information-seeking problems. However, most research remains primarily text-centric, overlooking visual information in the real world. This makes multimodal Deep Research highly challenging, as such agents require much stronger reasoning abilities in perception, logic, knowledge, and the use of more sophisticated tools compared to text-based agents. To address this limitation, we introduce WebWatcher, a multi-modal Agent for Deep Research equipped with enhanced visual-language reasoning capabilities. It leverages high-quality synthetic multimodal trajectories for efficient cold start training, utilizes various tools for deep reasoning, and further enhances generalization through reinforcement learning. To better evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a benchmark with BrowseComp-style that requires complex information retrieval involving both visual and textual information. Experimental results show that WebWatcher significantly outperforms proprietary baseline, RAG workflow and open-source agents in four challenging VQA benchmarks, which paves the way for solving complex multimodal information-seeking tasks.
☆ G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
☆ Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Large embedding tables are indispensable in modern recommendation systems, thanks to their ability to effectively capture and memorize intricate details of interactions among diverse entities. As we explore integrating large embedding tables into Pinterest's ads ranking models, we encountered not only common challenges such as sparsity and scalability, but also several obstacles unique to our context. Notably, our initial attempts to train large embedding tables from scratch resulted in neutral metrics. To tackle this, we introduced a novel multi-faceted pretraining scheme that incorporates multiple pretraining algorithms. This approach greatly enriched the embedding tables and resulted in significant performance improvements. As a result, the multi-faceted large embedding tables bring great performance gain on both the Click-Through Rate (CTR) and Conversion Rate (CVR) domains. Moreover, we designed a CPU-GPU hybrid serving infrastructure to overcome GPU memory limits and elevate the scalability. This framework has been deployed in the Pinterest Ads system and achieved 1.34% online CPC reduction and 2.60% CTR increase with neutral end-to-end latency change.
♻ ☆ Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
♻ ☆ QuMAB: Query-based Multi-Annotator Behavior Modeling with Reliability under Sparse Labels
Multi-annotator learning traditionally aggregates diverse annotations to approximate a single ground truth, treating disagreements as noise. However, this paradigm faces fundamental challenges: subjective tasks often lack absolute ground truth, and sparse annotation coverage makes aggregation statistically unreliable. We introduce a paradigm shift from sample-wise aggregation to annotator-wise behavior modeling. By treating annotator disagreements as valuable information rather than noise, modeling annotator-specific behavior patterns can reconstruct unlabeled data to reduce annotation cost, enhance aggregation reliability, and explain annotator decision behavior. To this end, we propose QuMAB (Query-based Multi-Annotator Behavior Pattern Learning), which uses light-weight queries to model individual annotators while capturing inter-annotator correlations as implicit regularization, preventing overfitting to sparse individual data while maintaining individualization and improving generalization, with a visualization of annotator focus regions offering an explainable analysis of behavior understanding. We contribute two large-scale datasets with dense per-annotator labels: STREET (4,300 labels/annotator) and AMER (average 3,118 labels/annotator), the first multimodal multi-annotator dataset. Extensive experiments demonstrate the superiority of our QuMAB in modeling individual annotators' behavior patterns, their utility for consensus prediction, and applicability under sparse annotations.
comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:2503.15237
♻ ☆ From Generation to Consumption: Personalized List Value Estimation for Re-ranking
Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.
♻ ☆ Generative Multi-Target Cross-Domain Recommendation
Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.
comment: fix some information by request
♻ ☆ ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
♻ ☆ CB-cPIR: Code-Based Computational Private Information Retrieval
A private information retrieval (PIR) scheme is a protocol that allows a user to retrieve a file from a database without revealing the identity of the desired file to a curious database. Given a distributed data storage system, efficient PIR can be achieved by making assumptions about the colluding capabilities of the storage servers holding the database. If these assumptions turn out to be incorrect, privacy is lost. In this work, we focus on the worst-case assumption: full collusion or, equivalently, viewing the storage system virtually as a single honest-but-curious server. We present CB-cPIR, a single-server code-based computational private information retrieval (cPIR) scheme that derives security from code-based cryptography. Specifically, the queries are protected by the hardness of decoding a random linear code. The scheme is heavily inspired by the pioneering code-based cPIR scheme proposed by Holzbaur, Hollanti, and Wachter-Zeh in [Holzbaur et al., "Computational Code-Based Single-Server Private Information Retrieval", 2020 IEEE ISIT] and fixes the vulnerabilities of the original scheme arising from highly probable rank differences in submatrices of the user's query. Recently, a new vulnerability was observed in [Lage, Bartz, "On the Security of a Code-Based PIR Scheme"], a simple modification to the scheme now fixes this vulnerability. For further validation of our scheme, we draw comparisons to the state-of-the-art lattice-based cPIR schemes.
comment: This paper builds on the work done in arXiv: 2402.02871v1 (IEEE ISIT24) and arXiv: 2001.07049 (IEEE ISIT20) Remark 6. briefly outlines a fix to a new attack, this paper will soon be updated to reflect the changes to the scheme
♻ ☆ JEPA4Rec: Learning Effective Language Representations for Sequential Recommendation via Joint Embedding Predictive Architecture
Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.
♻ ☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
♻ ☆ SSEmb: A Joint Structural and Semantic Embedding Framework for Mathematical Formula Retrieval
Formula retrieval is an important topic in Mathematical Information Retrieval. We propose SSEmb, a novel embedding framework capable of capturing both structural and semantic features of mathematical formulas. Structurally, we employ Graph Contrastive Learning to encode formulas represented as Operator Graphs. To enhance structural diversity while preserving mathematical validity of these formula graphs, we introduce a novel graph data augmentation approach through a substitution strategy. Semantically, we utilize Sentence-BERT to encode the surrounding text of formulas. Finally, for each query and its candidates, structural and semantic similarities are calculated separately and then fused through a weighted scheme. In the ARQMath-3 formula retrieval task, SSEmb outperforms existing embedding-based methods by over 5 percentage points on P'@10 and nDCG'@10. Furthermore, SSEmb enhances the performance of all runs of other methods and achieves state-of-the-art results when combined with Approach0.
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services onto online platforms, yet stock investment recommender systems have received limited attention compared to other industries. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios based on the modern portfolio theory, often neglecting user preferences. On the other hand, collaborative filtering (CF) methods also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend users preference with the portfolio theory. However, research on stock recommendations within the recommender system domain remains comparatively limited, and no existing model considers both the preference of users and the risk-return characteristics of stocks. In this regard, we propose a mean-variance efficient collaborative filtering (MVECF) model for stock recommendations that consider both aspects. Our model is specifically designed to improve the pareto optimality (mean-variance efficiency) in a trade-off between the risk (variance of return) and return (mean return) by systemically handling uncertainties in stock prices. Such improvements are incorporated into the MVECF model using regularization, and the model is restructured to fit into the ordinary matrix factorization scheme to boost computational efficiency. Experiments on real-world fund holdings data show that our model can increase the mean-variance efficiency of suggested portfolios while sacrificing just a small amount of mean average precision and recall. Finally, we further show MVECF is easily applicable to the state-of-the-art graph-based ranking models.
comment: 12 pages, 4 figures, preprint, under review
♻ ☆ Explainable Recommendation with Simulated Human Feedback
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach.
Computation and Language 137
☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
☆ Hop, Skip, and Overthink: Diagnosing Why Reasoning Models Fumble during Multi-Hop Analysis
The emergence of reasoning models and their integration into practical AI chat bots has led to breakthroughs in solving advanced math, deep search, and extractive question answering problems that requires a complex and multi-step thought process. Yet, a complete understanding of why these models hallucinate more than general purpose language models is missing. In this investigative study, we systematicallyexplore reasoning failures of contemporary language models on multi-hop question answering tasks. We introduce a novel, nuanced error categorization framework that examines failures across three critical dimensions: the diversity and uniqueness of source documents involved ("hops"), completeness in capturing relevant information ("coverage"), and cognitive inefficiency ("overthinking"). Through rigorous hu-man annotation, supported by complementary automated metrics, our exploration uncovers intricate error patterns often hidden by accuracy-centric evaluations. This investigative approach provides deeper insights into the cognitive limitations of current models and offers actionable guidance toward enhancing reasoning fidelity, transparency, and robustness in future language modeling efforts.
☆ FaST: Feature-aware Sampling and Tuning for Personalized Preference Alignment with Limited Data
LLM-powered conversational assistants are often deployed in a one-size-fits-all manner, which fails to accommodate individual user preferences. Recently, LLM personalization -- tailoring models to align with specific user preferences -- has gained increasing attention as a way to bridge this gap. In this work, we specifically focus on a practical yet challenging setting where only a small set of preference annotations can be collected per user -- a problem we define as Personalized Preference Alignment with Limited Data (PPALLI). To support research in this area, we introduce two datasets -- DnD and ELIP -- and benchmark a variety of alignment techniques on them. We further propose FaST, a highly parameter-efficient approach that leverages high-level features automatically discovered from the data, achieving the best overall performance.
☆ Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
☆ GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.
☆ Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management
Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
comment: Preprint. Work in progress
☆ Multi-module GRPO: Composing Policy Gradients and Prompt Optimization for Language Model Programs
Group Relative Policy Optimization (GRPO) has proven to be an effective tool for post-training language models (LMs). However, AI systems are increasingly expressed as modular programs that mix together multiple LM calls with distinct prompt templates and other tools, and it is not clear how best to leverage GRPO to improve these systems. We begin to address this challenge by defining mmGRPO, a simple multi-module generalization of GRPO that groups LM calls by module across rollouts and handles variable-length and interrupted trajectories. We find that mmGRPO, composed with automatic prompt optimization, improves accuracy by 11% on average across classification, many-hop search, and privacy-preserving delegation tasks against the post-trained LM, and by 5% against prompt optimization on its own. We open-source mmGRPO in DSPy as the dspy.GRPO optimizer.
☆ Can NLP Tackle Hate Speech in the Real World? Stakeholder-Informed Feedback and Survey on Counterspeech
Counterspeech, i.e. the practice of responding to online hate speech, has gained traction in NLP as a promising intervention. While early work emphasised collaboration with non-governmental organisation stakeholders, recent research trends have shifted toward automated pipelines that reuse a small set of legacy datasets, often without input from affected communities. This paper presents a systematic review of 74 NLP studies on counterspeech, analysing the extent to which stakeholder participation influences dataset creation, model development, and evaluation. To complement this analysis, we conducted a participatory case study with five NGOs specialising in online Gender-Based Violence (oGBV), identifying stakeholder-informed practices for counterspeech generation. Our findings reveal a growing disconnect between current NLP research and the needs of communities most impacted by toxic online content. We conclude with concrete recommendations for re-centring stakeholder expertise in counterspeech research.
☆ IFDECORATOR: Wrapping Instruction Following Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) improves instruction following capabilities of large language models (LLMs), but suffers from training inefficiency due to inadequate difficulty assessment. Moreover, RLVR is prone to over-optimization, where LLMs exploit verification shortcuts without aligning to the actual intent of user instructions. We introduce Instruction Following Decorator (IFDecorator}, a framework that wraps RLVR training into a robust and sample-efficient pipeline. It consists of three components: (1) a cooperative-adversarial data flywheel that co-evolves instructions and hybrid verifications, generating progressively more challenging instruction-verification pairs; (2) IntentCheck, a bypass module enforcing intent alignment; and (3) trip wires, a diagnostic mechanism that detects reward hacking via trap instructions, which trigger and capture shortcut exploitation behaviors. Our Qwen2.5-32B-Instruct-IFDecorator achieves 87.43% accuracy on IFEval, outperforming larger proprietary models such as GPT-4o. Additionally, we demonstrate substantial improvements on FollowBench while preserving general capabilities. Our trip wires show significant reductions in reward hacking rates. We will release models, code, and data for future research.
comment: 7 pages, 4 figures
☆ P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis
Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.
☆ Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
Text-to-SQL translation enables non-expert users to query relational databases using natural language, with applications in education and business intelligence. This study evaluates three lightweight transformer models - T5-Small, BART-Small, and GPT-2 - on the Spider dataset, focusing on low-resource settings. We developed a reusable, model-agnostic pipeline that tailors schema formatting to each model's architecture, training them across 1000 to 5000 iterations and evaluating on 1000 test samples using Logical Form Accuracy (LFAcc), BLEU, and Exact Match (EM) metrics. Fine-tuned T5-Small achieves the highest LFAcc (27.8%), outperforming BART-Small (23.98%) and GPT-2 (20.1%), highlighting encoder-decoder models' superiority in schema-aware SQL generation. Despite resource constraints limiting performance, our pipeline's modularity supports future enhancements, such as advanced schema linking or alternative base models. This work underscores the potential of compact transformers for accessible text-to-SQL solutions in resource-scarce environments.
☆ TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
☆ Share Your Attention: Transformer Weight Sharing via Matrix-based Dictionary Learning
Large language models (LLMs) have revolutionized AI applications, yet their high computational and memory demands hinder their widespread deployment. Existing compression techniques focus on intra-block optimizations (e.g. low-rank approximation, attention head pruning), while the repetitive layered structure of transformers implies significant inter-block redundancy - a dimension largely unexplored beyond key-value (KV) caching. Inspired by dictionary learning in CNNs, we propose a framework for structured weight sharing across transformer layers. Our approach decomposes attention projection matrices into shared dictionary atoms, reducing the attention module's parameters by 66.7% while achieving on-par performance. Unlike complex methods requiring distillation or architectural changes, MASA (Matrix Atom Sharing in Attention) operates as a drop-in replacement - trained with standard optimizers - and represents each layer's weights as linear combinations of shared matrix atoms. Experiments across scales (100M-700M parameters) show that MASA achieves better benchmark accuracy and perplexity than grouped-query attention (GQA), low-rank baselines and recently proposed Repeat-all-over/Sequential sharing at comparable parameter budgets. Ablation studies confirm robustness to the dictionary size and the efficacy of shared representations in capturing cross-layer statistical regularities. Extending to Vision Transformers (ViT), MASA matches performance metrics on image classification and detection tasks with 66.7% fewer attention parameters. By combining dictionary learning strategies with transformer efficiency, MASA offers a scalable blueprint for parameter-efficient models without sacrificing performance. Finally, we investigate the possibility of employing MASA on pretrained LLMs to reduce their number of parameters without experiencing any significant drop in their performance.
☆ Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration
While AI agents show potential in scientific ideation, most existing frameworks rely on single-agent refinement, limiting creativity due to bounded knowledge and perspective. Inspired by real-world research dynamics, this paper investigates whether structured multi-agent discussions can surpass solitary ideation. We propose a cooperative multi-agent framework for generating research proposals and systematically compare configurations including group size, leaderled versus leaderless structures, and team compositions varying in interdisciplinarity and seniority. To assess idea quality, we employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth. Our results show that multi-agent discussions substantially outperform solitary baselines. A designated leader acts as a catalyst, transforming discussion into more integrated and visionary proposals. Notably, we find that cognitive diversity is a primary driver of quality, yet expertise is a non-negotiable prerequisite, as teams lacking a foundation of senior knowledge fail to surpass even a single competent agent. These findings offer actionable insights for designing collaborative AI ideation systems and shed light on how team structure influences creative outcomes.
comment: Preprint
☆ Do Recommender Systems Really Leverage Multimodal Content? A Comprehensive Analysis on Multimodal Representations for Recommendation CIKM 2025
Multimodal Recommender Systems aim to improve recommendation accuracy by integrating heterogeneous content, such as images and textual metadata. While effective, it remains unclear whether their gains stem from true multimodal understanding or increased model complexity. This work investigates the role of multimodal item embeddings, emphasizing the semantic informativeness of the representations. Initial experiments reveal that embeddings from standard extractors (e.g., ResNet50, Sentence-Bert) enhance performance, but rely on modality-specific encoders and ad hoc fusion strategies that lack control over cross-modal alignment. To overcome these limitations, we leverage Large Vision-Language Models (LVLMs) to generate multimodal-by-design embeddings via structured prompts. This approach yields semantically aligned representations without requiring any fusion. Experiments across multiple settings show notable performance improvements. Furthermore, LVLMs embeddings offer a distinctive advantage: they can be decoded into structured textual descriptions, enabling direct assessment of their multimodal comprehension. When such descriptions are incorporated as side content into recommender systems, they improve recommendation performance, empirically validating the semantic depth and alignment encoded within LVLMs outputs. Our study highlights the importance of semantically rich representations and positions LVLMs as a compelling foundation for building robust and meaningful multimodal representations in recommendation tasks.
comment: Accepted as Full Research Papers at CIKM 2025
☆ Analyzing and Mitigating Object Hallucination: A Training Bias Perspective
As scaling up training data has significantly improved the general multimodal capabilities of Large Vision-Language Models (LVLMs), they still suffer from the hallucination issue, generating text that is inconsistent with the visual input. This phenomenon motivates us to systematically investigate the role of training data in hallucination. We introduce a new benchmark, POPEv2, which consists of counterfactual images collected from the training data of LVLMs with certain objects masked. Through comprehensive evaluation on POPEv2, we find that current LVLMs suffer from training bias: they fail to fully leverage their training data and hallucinate more frequently on images seen during training. Specifically, they perform poorly on counterfactual images, often incorrectly answering ``Yes'' to questions about masked objects. To understand this issue, we conduct probing experiments on the models' internal components, revealing that this training bias is primarily located in the language modeling (LM) head. Based on these findings, we propose Obliviate, an efficient and lightweight unlearning method designed to mitigate object hallucination via training bias unlearning. Obliviate identifies the discrepancy between ground-truth labels and model outputs on the training data as a proxy for bias and adopts a parameter- and data-efficient fine-tuning strategy that only updates the LM head. Extensive experiments demonstrate the effectiveness of our approach. While only reusing the training data and updating approximately 2\% of the parameters, Obliviate significantly reduces hallucination across both discriminative and generative tasks. Furthermore, it demonstrates strong scalability with respect to both model size (2B to 72B) and training data volume, and exhibits promising generalization to hallucination types beyond object-level hallucination. Our code and data will be publicly released.
☆ Unveiling the Landscape of Clinical Depression Assessment: From Behavioral Signatures to Psychiatric Reasoning
Depression is a widespread mental disorder that affects millions worldwide. While automated depression assessment shows promise, most studies rely on limited or non-clinically validated data, and often prioritize complex model design over real-world effectiveness. In this paper, we aim to unveil the landscape of clinical depression assessment. We introduce C-MIND, a clinical neuropsychiatric multimodal diagnosis dataset collected over two years from real hospital visits. Each participant completes three structured psychiatric tasks and receives a final diagnosis from expert clinicians, with informative audio, video, transcript, and functional near-infrared spectroscopy (fNIRS) signals recorded. Using C-MIND, we first analyze behavioral signatures relevant to diagnosis. We train a range of classical models to quantify how different tasks and modalities contribute to diagnostic performance, and dissect the effectiveness of their combinations. We then explore whether LLMs can perform psychiatric reasoning like clinicians and identify their clear limitations in realistic clinical settings. In response, we propose to guide the reasoning process with clinical expertise and consistently improves LLM diagnostic performance by up to 10% in Macro-F1 score. We aim to build an infrastructure for clinical depression assessment from both data and algorithmic perspectives, enabling C-MIND to facilitate grounded and reliable research for mental healthcare.
☆ StyliTruth : Unlocking Stylized yet Truthful LLM Generation via Disentangled Steering
Generating stylized large language model (LLM) responses via representation editing is a promising way for fine-grained output control. However, there exists an inherent trade-off: imposing a distinctive style often degrades truthfulness. Existing representation editing methods, by naively injecting style signals, overlook this collateral impact and frequently contaminate the model's core truthfulness representations, resulting in reduced answer correctness. We term this phenomenon stylization-induced truthfulness collapse. We attribute this issue to latent coupling between style and truth directions in certain key attention heads, and propose StyliTruth, a mechanism that preserves stylization while keeping truthfulness intact. StyliTruth separates the style-relevant and truth-relevant subspaces in the model's representation space via an orthogonal deflation process. This decomposition enables independent control of style and truth in their own subspaces, minimizing interference. By designing adaptive, token-level steering vectors within each subspace, we dynamically and precisely control the generation process to maintain both stylistic fidelity and truthfulness. We validate our method on multiple styles and languages. Extensive experiments and analyses show that StyliTruth significantly reduces stylization-induced truthfulness collapse and outperforms existing inference-time intervention methods in balancing style adherence with truthfulness.
☆ Causal Reflection with Language Models
While LLMs exhibit impressive fluency and factual recall, they struggle with robust causal reasoning, often relying on spurious correlations and brittle patterns. Similarly, traditional Reinforcement Learning agents also lack causal understanding, optimizing for rewards without modeling why actions lead to outcomes. We introduce Causal Reflection, a framework that explicitly models causality as a dynamic function over state, action, time, and perturbation, enabling agents to reason about delayed and nonlinear effects. Additionally, we define a formal Reflect mechanism that identifies mismatches between predicted and observed outcomes and generates causal hypotheses to revise the agent's internal model. In this architecture, LLMs serve not as black-box reasoners, but as structured inference engines translating formal causal outputs into natural language explanations and counterfactuals. Our framework lays the theoretical groundwork for Causal Reflective agents that can adapt, self-correct, and communicate causal understanding in evolving environments.
☆ CALE : Concept-Aligned Embeddings for Both Within-Lemma and Inter-Lemma Sense Differentiation
Lexical semantics is concerned with both the multiple senses a word can adopt in different contexts, and the semantic relations that exist between meanings of different words. To investigate them, Contextualized Language Models are a valuable tool that provides context-sensitive representations that can be used to investigate lexical meaning. Recent works like XL-LEXEME have leveraged the task of Word-in-Context to fine-tune them to get more semantically accurate representations, but Word-in-Context only compares occurrences of the same lemma, limiting the range of captured information. In this paper, we propose an extension, Concept Differentiation, to include inter-words scenarios. We provide a dataset for this task, derived from SemCor data. Then we fine-tune several representation models on this dataset. We call these models Concept-Aligned Embeddings (CALE). By challenging our models and other models on various lexical semantic tasks, we demonstrate that the proposed models provide efficient multi-purpose representations of lexical meaning that reach best performances in our experiments. We also show that CALE's fine-tuning brings valuable changes to the spatial organization of embeddings.
comment: Under review in ARR July 2025
☆ OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use ACL 2025
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.
comment: ACL 2025 (Oral)
☆ FrEVL: Leveraging Frozen Pretrained Embeddings for Efficient Vision-Language Understanding
The deployment of vision-language models remains constrained by substantial computational requirements. We present \textbf{FrEVL}, a framework exploring whether frozen pretrained embeddings can support effective vision-language understanding. Our analysis reveals that frozen embeddings contain rich information for discriminative tasks, achieving 85\% to 95\% of state-of-the-art performance on standard benchmarks with only 68.4M trainable parameters. This performance dichotomy reveals a critical insight: frozen embedding effectiveness depends on alignment between pretraining objectives and downstream task requirements. When accounting for end-to-end computation including embedding extraction, FrEVL provides $2.3\times$ speedup with 52\% lower energy consumption, making it suitable for scenarios with pre-computable inputs or when deployment constraints outweigh marginal performance gains. Our evaluation provides practitioners with guidance on when frozen embedding approaches represent viable alternatives to full model deployment. We will release our complete implementation and evaluation framework to facilitate further research into efficient multi-modal understanding.
comment: 8 pages, 4 figures
☆ Automated Generation of Curriculum-Aligned Multiple-Choice Questions for Malaysian Secondary Mathematics Using Generative AI
This paper addresses the critical need for scalable and high-quality educational assessment tools within the Malaysian education system. It highlights the potential of Generative AI (GenAI) while acknowledging the significant challenges of ensuring factual accuracy and curriculum alignment, especially for low-resource languages like Bahasa Melayu. This research introduces and compares four incremental pipelines for generating Form 1 Mathematics multiple-choice questions (MCQs) in Bahasa Melayu using OpenAI's GPT-4o. The methods range from non-grounded prompting (structured and basic) to Retrieval-Augmented Generation (RAG) approaches (one using the LangChain framework, one implemented manually). The system is grounded in official curriculum documents, including teacher-prepared notes and the yearly teaching plan (RPT). A dual-pronged automated evaluation framework is employed to assess the generated questions. Curriculum alignment is measured using Semantic Textual Similarity (STS) against the RPT, while contextual validity is verified through a novel RAG-based Question-Answering (RAG-QA) method. The results demonstrate that RAG-based pipelines significantly outperform non-grounded prompting methods, producing questions with higher curriculum alignment and factual validity. The study further analyzes the trade-offs between the ease of implementation of framework-based RAG and the fine-grained control offered by a manual pipeline. This work presents a validated methodology for generating curriculum-specific educational content in a low-resource language, introduces a symbiotic RAG-QA evaluation technique, and provides actionable insights for the development and deployment of practical EdTech solutions in Malaysia and similar regions.
☆ StepFun-Formalizer: Unlocking the Autoformalization Potential of LLMs through Knowledge-Reasoning Fusion
Autoformalization aims to translate natural-language mathematical statements into a formal language. While LLMs have accelerated progress in this area, existing methods still suffer from low accuracy. We identify two key abilities for effective autoformalization: comprehensive mastery of formal-language domain knowledge, and reasoning capability of natural language problem understanding and informal-formal alignment. Without the former, a model cannot identify the correct formal objects; without the latter, it struggles to interpret real-world contexts and map them precisely into formal expressions. To address these gaps, we introduce ThinkingF, a data synthesis and training pipeline that improves both abilities. First, we construct two datasets: one by distilling and selecting large-scale examples rich in formal knowledge, and another by generating informal-to-formal reasoning trajectories guided by expert-designed templates. We then apply SFT and RLVR with these datasets to further fuse and refine the two abilities. The resulting 7B and 32B models exhibit both comprehensive formal knowledge and strong informal-to-formal reasoning. Notably, StepFun-Formalizer-32B achieves SOTA BEq@1 scores of 40.5% on FormalMATH-Lite and 26.7% on ProverBench, surpassing all prior general-purpose and specialized models.
comment: 24 pages, 17 figures, under review
☆ Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
comment: under review
☆ Beyond Pixels: Exploring DOM Downsampling for LLM-Based Web Agents
Frontier LLMs only recently enabled serviceable, autonomous web agents. At that, a model poses as an instantaneous domain model backend. Ought to suggest interaction, it is consulted with a web-based task and respective application state. The key problem lies in application state serialisation $\unicode{x2013}$ referred to as snapshot. State-of-the-art web agents are premised on grounded GUI snapshots, i.e., screenshots enhanced with visual cues. Not least to resemble human perception, but for images representing relatively cheap means of model input. LLM vision still lag behind code interpretation capabilities. DOM snapshots, which structurally resemble HTML, impose a desired alternative. Vast model input token size, however, disables reliable implementation with web agents to date. We propose D2Snap, a first-of-its-kind DOM downsampling algorithm. Based on a GPT-4o backend, we evaluate D2Snap on tasks sampled from the Online-Mind2Web dataset. The success rate of D2Snap-downsampled DOM snapshots (67%) matches a grounded GUI snapshot baseline (65%) $\unicode{x2013}$ within the same input token order of magnitude (1e3). Our best evaluated configurations $\unicode{x2013}$ one token order above, but within the model's context window $\unicode{x2013}$ outperform this baseline by 8%. Our evaluation, moreover, yields that DOM-inherent hierarchy embodies a strong UI feature for LLMs.
☆ Dialogue Response Prefetching Based on Semantic Similarity and Prediction Confidence of Language Model
Prefetching of dialogue responses has been investigated to reduce user-perceived latency (UPL), which refers to the user's waiting time before receiving the system's response, in spoken dialogue systems. To reduce the UPL, it is necessary to predict complete user utterances before the end of the user's speech, typically by language models, to prepare prefetched dialogue responses. In this study, we proposed a prediction confidence model (PCM) that determines whether prefetching is possible or not by estimating the semantic similarity between the predicted complete user utterance and the complete user utterance. We evaluated our PCM based on the differences between the predicted complete user utterance and the complete user utterance.
☆ What Do Humans Hear When Interacting? Experiments on Selective Listening for Evaluating ASR of Spoken Dialogue Systems
Spoken dialogue systems (SDSs) utilize automatic speech recognition (ASR) at the front end of their pipeline. The role of ASR in SDSs is to recognize information in user speech related to response generation appropriately. Examining selective listening of humans, which refers to the ability to focus on and listen to important parts of a conversation during the speech, will enable us to identify the ASR capabilities required for SDSs and evaluate them. In this study, we experimentally confirmed selective listening when humans generate dialogue responses by comparing human transcriptions for generating dialogue responses and reference transcriptions. Based on our experimental results, we discuss the possibility of a new ASR evaluation method that leverages human selective listening, which can identify the gap between transcription ability between ASR systems and humans.
☆ Why are LLMs' abilities emergent?
The remarkable success of Large Language Models (LLMs) in generative tasks has raised fundamental questions about the nature of their acquired capabilities, which often appear to emerge unexpectedly without explicit training. This paper examines the emergent properties of Deep Neural Networks (DNNs) through both theoretical analysis and empirical observation, addressing the epistemological challenge of "creation without understanding" that characterises contemporary AI development. We explore how the neural approach's reliance on nonlinear, stochastic processes fundamentally differs from symbolic computational paradigms, creating systems whose macro-level behaviours cannot be analytically derived from micro-level neuron activities. Through analysis of scaling laws, grokking phenomena, and phase transitions in model capabilities, I demonstrate that emergent abilities arise from the complex dynamics of highly sensitive nonlinear systems rather than simply from parameter scaling alone. My investigation reveals that current debates over metrics, pre-training loss thresholds, and in-context learning miss the fundamental ontological nature of emergence in DNNs. I argue that these systems exhibit genuine emergent properties analogous to those found in other complex natural phenomena, where systemic capabilities emerge from cooperative interactions among simple components without being reducible to their individual behaviours. The paper concludes that understanding LLM capabilities requires recognising DNNs as a new domain of complex dynamical systems governed by universal principles of emergence, similar to those operating in physics, chemistry, and biology. This perspective shifts the focus from purely phenomenological definitions of emergence to understanding the internal dynamic transformations that enable these systems to acquire capabilities that transcend their individual components.
comment: 20 pages
☆ Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
This study evaluates advanced natural language processing (NLP) techniques to enhance crash data quality by mining crash narratives, using secondary crash identification in Kentucky as a case study. Drawing from 16,656 manually reviewed narratives from 2015-2022, with 3,803 confirmed secondary crashes, we compare three model classes: zero-shot open-source large language models (LLMs) (LLaMA3:70B, DeepSeek-R1:70B, Qwen3:32B, Gemma3:27B); fine-tuned transformers (BERT, DistilBERT, RoBERTa, XLNet, Longformer); and traditional logistic regression as baseline. Models were calibrated on 2015-2021 data and tested on 1,771 narratives from 2022. Fine-tuned transformers achieved superior performance, with RoBERTa yielding the highest F1-score (0.90) and accuracy (95%). Zero-shot LLaMA3:70B reached a comparable F1 of 0.86 but required 139 minutes of inference; the logistic baseline lagged well behind (F1:0.66). LLMs excelled in recall for some variants (e.g., GEMMA3:27B at 0.94) but incurred high computational costs (up to 723 minutes for DeepSeek-R1:70B), while fine-tuned models processed the test set in seconds after brief training. Further analysis indicated that mid-sized LLMs (e.g., DeepSeek-R1:32B) can rival larger counterparts in performance while reducing runtime, suggesting opportunities for optimized deployments. Results highlight trade-offs between accuracy, efficiency, and data requirements, with fine-tuned transformer models balancing precision and recall effectively on Kentucky data. Practical deployment considerations emphasize privacy-preserving local deployment, ensemble approaches for improved accuracy, and incremental processing for scalability, providing a replicable scheme for enhancing crash-data quality with advanced NLP.
comment: 19 pages, 2 figures
☆ Chain of Questions: Guiding Multimodal Curiosity in Language Models
Reasoning capabilities in large language models (LLMs) have substantially advanced through methods such as chain-of-thought and explicit step-by-step explanations. However, these improvements have not yet fully transitioned to multimodal contexts, where models must proactively decide which sensory modalities such as vision, audio, or spatial perception to engage when interacting with complex real-world environments. In this paper, we introduce the Chain of Questions (CoQ) framework, a curiosity-driven reasoning approach that encourages multimodal language models to dynamically generate targeted questions regarding their surroundings. These generated questions guide the model to selectively activate relevant modalities, thereby gathering critical information necessary for accurate reasoning and response generation. We evaluate our framework on a novel multimodal benchmark dataset, assembled by integrating WebGPT, ScienceQA, AVSD, and ScanQA datasets. Experimental results demonstrate that our CoQ method improves a foundation model's ability to effectively identify and integrate pertinent sensory information. This leads to improved accuracy, interpretability, and alignment of the reasoning process with diverse multimodal tasks.
☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges by 1) introducing a novel annotation schema specifically designed to support literature review generation and 2) conducting a comprehensive evaluation of a wide range of state-of-the-art large language models (LLMs) in classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments yield several novel insights that advance the state of the art in this challenging domain. First, the current generation of LLMs performs remarkably well on this task when fine-tuned on high-quality data, achieving performance levels above 96\% F1. Second, while large proprietary models like GPT-4o achieve the best results, some lightweight open-source alternatives also demonstrate excellent performance. Finally, enriching the training data with semi-synthetic examples generated by LLMs proves beneficial, enabling small encoders to achieve robust results and significantly enhancing the performance of several open decoder models.
☆ Beyond the Leaderboard: Rethinking Medical Benchmarks for Large Language Models
Large language models (LLMs) show significant potential in healthcare, prompting numerous benchmarks to evaluate their capabilities. However, concerns persist regarding the reliability of these benchmarks, which often lack clinical fidelity, robust data management, and safety-oriented evaluation metrics. To address these shortcomings, we introduce MedCheck, the first lifecycle-oriented assessment framework specifically designed for medical benchmarks. Our framework deconstructs a benchmark's development into five continuous stages, from design to governance, and provides a comprehensive checklist of 46 medically-tailored criteria. Using MedCheck, we conducted an in-depth empirical evaluation of 53 medical LLM benchmarks. Our analysis uncovers widespread, systemic issues, including a profound disconnect from clinical practice, a crisis of data integrity due to unmitigated contamination risks, and a systematic neglect of safety-critical evaluation dimensions like model robustness and uncertainty awareness. Based on these findings, MedCheck serves as both a diagnostic tool for existing benchmarks and an actionable guideline to foster a more standardized, reliable, and transparent approach to evaluating AI in healthcare.
☆ A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Graph-based Retrieval-Augmented Generation (GraphRAG) has recently emerged as a promising paradigm for enhancing large language models (LLMs) by converting raw text into structured knowledge graphs, improving both accuracy and explainability. However, GraphRAG relies on LLMs to extract knowledge from raw text during graph construction, and this process can be maliciously manipulated to implant misleading information. Targeting this attack surface, we propose two knowledge poisoning attacks (KPAs) and demonstrate that modifying only a few words in the source text can significantly change the constructed graph, poison the GraphRAG, and severely mislead downstream reasoning. The first attack, named Targeted KPA (TKPA), utilizes graph-theoretic analysis to locate vulnerable nodes in the generated graphs and rewrites the corresponding narratives with LLMs, achieving precise control over specific question-answering (QA) outcomes with a success rate of 93.1\%, while keeping the poisoned text fluent and natural. The second attack, named Universal KPA (UKPA), exploits linguistic cues such as pronouns and dependency relations to disrupt the structural integrity of the generated graph by altering globally influential words. With fewer than 0.05\% of full text modified, the QA accuracy collapses from 95\% to 50\%. Furthermore, experiments show that state-of-the-art defense methods fail to detect these attacks, highlighting that securing GraphRAG pipelines against knowledge poisoning remains largely unexplored.
☆ ShoppingBench: A Real-World Intent-Grounded Shopping Benchmark for LLM-based Agents AAAI2026
Existing benchmarks in e-commerce primarily focus on basic user intents, such as finding or purchasing products. However, real-world users often pursue more complex goals, such as applying vouchers, managing budgets, and finding multi-products seller. To bridge this gap, we propose ShoppingBench, a novel end-to-end shopping benchmark designed to encompass increasingly challenging levels of grounded intent. Specifically, we propose a scalable framework to simulate user instructions based on various intents derived from sampled real-world products. To facilitate consistent and reliable evaluations, we provide a large-scale shopping sandbox that serves as an interactive simulated environment, incorporating over 2.5 million real-world products. Experimental results demonstrate that even state-of-the-art language agents (such as GPT-4.1) achieve absolute success rates under 50% on our benchmark tasks, highlighting the significant challenges posed by our ShoppingBench. In addition, we propose a trajectory distillation strategy and leverage supervised fine-tuning, along with reinforcement learning on synthetic trajectories, to distill the capabilities of a large language agent into a smaller one. As a result, our trained agent achieves competitive performance compared to GPT-4.1.
comment: submit to AAAI2026
☆ KVSink: Understanding and Enhancing the Preservation of Attention Sinks in KV Cache Quantization for LLMs
Key-Value (KV) cache quantization has become a widely adopted optimization technique for efficient large language models (LLMs) inference by reducing KV cache memory usage and mitigating memory-bound constraints. Recent studies have emphasized the importance of preserving the original precision of KVs for the first few tokens to ensure the protection of attention sinks. While this approach has proven effective in mitigating performance degradation, its underlying principles remain insufficiently understood. Moreover, it fails to address the recent discovery that attention sinks can emerge beyond the initial token positions. In this work, we elucidate the underlying mechanisms of attention sinks during inference by examining their role in the cross-layer evolution of extreme activation outliers. Additionally, we provide a comprehensive analysis of the interplay between attention sinks and KV cache quantization. Based on our enhanced understanding, we introduce \textit{\textbf{KVSink}}, a plug-and-play method that effectively predicts sink tokens with negligible overhead, enabling more thorough preservation. Extensive experiments demonstrate that KVSink outperforms the existing Preserve-First-N (PFN) strategy, offering more effective preservation of attention sinks during KV cache quantization. Moreover, when applied to the well-established KVQuant method, KVSink further improves perplexity (PPL) and reduces reliance on 16-bit numerical outliers.
comment: Published as a conference paper at COLM 2025
☆ Graph Representation Learning with Massive Unlabeled Data for Rumor Detection
With the development of social media, rumors spread quickly, cause great harm to society and economy. Thereby, many effective rumor detection methods have been developed, among which the rumor propagation structure learning based methods are particularly effective compared to other methods. However, the existing methods still suffer from many issues including the difficulty to obtain large-scale labeled rumor datasets, which leads to the low generalization ability and the performance degeneration on new events since rumors are time-critical and usually appear with hot topics or newly emergent events. In order to solve the above problems, in this study, we used large-scale unlabeled topic datasets crawled from the social media platform Weibo and Twitter with claim propagation structure to improve the semantic learning ability of a graph reprentation learing model on various topics. We use three typical graph self-supervised methods, InfoGraph, JOAO and GraphMAE in two commonly used training strategies, to verify the performance of general graph semi-supervised methods in rumor detection tasks. In addition, for alleviating the time and topic difference between unlabeled topic data and rumor data, we also collected a rumor dataset covering a variety of topics over a decade (10-year ago from 2022) from the Weibo rumor-refuting platform. Our experiments show that these general graph self-supervised learning methods outperform previous methods specifically designed for rumor detection tasks and achieve good performance under few-shot conditions, demonstrating the better generalization ability with the help of our massive unlabeled topic dataset.
comment: 9 pages, 3 figures
☆ TalkDep: Clinically Grounded LLM Personas for Conversation-Centric Depression Screening CIKM 2025
The increasing demand for mental health services has outpaced the availability of real training data to develop clinical professionals, leading to limited support for the diagnosis of depression. This shortage has motivated the development of simulated or virtual patients to assist in training and evaluation, but existing approaches often fail to generate clinically valid, natural, and diverse symptom presentations. In this work, we embrace the recent advanced language models as the backbone and propose a novel clinician-in-the-loop patient simulation pipeline, TalkDep, with access to diversified patient profiles to develop simulated patients. By conditioning the model on psychiatric diagnostic criteria, symptom severity scales, and contextual factors, our goal is to create authentic patient responses that can better support diagnostic model training and evaluation. We verify the reliability of these simulated patients with thorough assessments conducted by clinical professionals. The availability of validated simulated patients offers a scalable and adaptable resource for improving the robustness and generalisability of automatic depression diagnosis systems.
comment: Paper accepted at CIKM 2025
☆ DP-GPT4MTS: Dual-Prompt Large Language Model for Textual-Numerical Time Series Forecasting
Time series forecasting is crucial in strategic planning and decision-making across various industries. Traditional forecasting models mainly concentrate on numerical time series data, often overlooking important textual information such as events and news, which can significantly affect forecasting accuracy. While large language models offer a promise for integrating multimodal data, existing single-prompt frameworks struggle to effectively capture the semantics of timestamped text, introducing redundant information that can hinder model performance. To address this limitation, we introduce DP-GPT4MTS (Dual-Prompt GPT2-base for Multimodal Time Series), a novel dual-prompt large language model framework that combines two complementary prompts: an explicit prompt for clear task instructions and a textual prompt for context-aware embeddings from time-stamped data. The tokenizer generates the explicit prompt while the embeddings from the textual prompt are refined through self-attention and feed-forward networks. Comprehensive experiments conducted on diverse textural-numerical time series datasets demonstrate that this approach outperforms state-of-the-art algorithms in time series forecasting. This highlights the significance of incorporating textual context via a dual-prompt mechanism to achieve more accurate time series predictions.
☆ Hierarchical Text Classification Using Black Box Large Language Models
Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
comment: 16 pages, 6 figures
☆ ReasoningGuard: Safeguarding Large Reasoning Models with Inference-time Safety Aha Moments
Large Reasoning Models (LRMs) have demonstrated impressive performance in reasoning-intensive tasks, but they remain vulnerable to harmful content generation, particularly in the mid-to-late steps of their reasoning processes. Existing defense mechanisms, however, rely on costly fine-tuning and additional expert knowledge, which restricts their scalability. In this work, we propose ReasoningGuard, an inference-time safeguard for LRMs, which injects timely safety aha moments to steer harmless while helpful reasoning processes. Leveraging the model's internal attention behavior, our approach accurately identifies critical points in the reasoning path, and triggers spontaneous, safety-oriented reflection. To safeguard both the subsequent reasoning steps and the final answers, we further implement a scaling sampling strategy during the decoding phase, selecting the optimal reasoning path. Inducing minimal extra inference cost, ReasoningGuard effectively mitigates three types of jailbreak attacks, including the latest ones targeting the reasoning process of LRMs. Our approach outperforms seven existing safeguards, achieving state-of-the-art safety defenses while effectively avoiding the common exaggerated safety issues.
☆ Reasoning Beyond Labels: Measuring LLM Sentiment in Low-Resource, Culturally Nuanced Contexts
Sentiment analysis in low-resource, culturally nuanced contexts challenges conventional NLP approaches that assume fixed labels and universal affective expressions. We present a diagnostic framework that treats sentiment as a context-dependent, culturally embedded construct, and evaluate how large language models (LLMs) reason about sentiment in informal, code-mixed WhatsApp messages from Nairobi youth health groups. Using a combination of human-annotated data, sentiment-flipped counterfactuals, and rubric-based explanation evaluation, we probe LLM interpretability, robustness, and alignment with human reasoning. Framing our evaluation through a social-science measurement lens, we operationalize and interrogate LLMs outputs as an instrument for measuring the abstract concept of sentiment. Our findings reveal significant variation in model reasoning quality, with top-tier LLMs demonstrating interpretive stability, while open models often falter under ambiguity or sentiment shifts. This work highlights the need for culturally sensitive, reasoning-aware AI evaluation in complex, real-world communication.
☆ Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models
Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.
☆ Characterizing Deep Research: A Benchmark and Formal Definition
Information tasks such as writing surveys or analytical reports require complex search and reasoning, and have recently been grouped under the umbrella of \textit{deep research} -- a term also adopted by recent models targeting these capabilities. Despite growing interest, the scope of the deep research task remains underdefined and its distinction from other reasoning-intensive problems is poorly understood. In this paper, we propose a formal characterization of the deep research (DR) task and introduce a benchmark to evaluate the performance of DR systems. We argue that the core defining feature of deep research is not the production of lengthy report-style outputs, but rather the high fan-out over concepts required during the search process, i.e., broad and reasoning-intensive exploration. To enable objective evaluation, we define DR using an intermediate output representation that encodes key claims uncovered during search-separating the reasoning challenge from surface-level report generation. Based on this formulation, we propose a diverse, challenging benchmark LiveDRBench with 100 challenging tasks over scientific topics (e.g., datasets, materials discovery, prior art search) and public interest events (e.g., flight incidents, movie awards). Across state-of-the-art DR systems, F1 score ranges between 0.02 and 0.72 for any sub-category. OpenAI's model performs the best with an overall F1 score of 0.55. Analysis of reasoning traces reveals the distribution over the number of referenced sources, branching, and backtracking events executed by current DR systems, motivating future directions for improving their search mechanisms and grounding capabilities. The benchmark is available at https://github.com/microsoft/LiveDRBench.
comment: First three authors contributed equally (ordered alphabetically)
☆ Hacking Hallucinations of MLLMs with Causal Sufficiency and Necessity
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across vision-language tasks. However, they may suffer from hallucinations--generating outputs that are semantically inconsistent with the input image or text. Through causal analyses, we find that: (i) hallucinations with omission may arise from the failure to adequately capture essential causal factors, and (ii) hallucinations with fabrication are likely caused by the model being misled by non-causal cues. To address these challenges, we propose a novel reinforcement learning framework guided by causal completeness, which jointly considers both causal sufficiency and causal necessity of tokens. Specifically, we evaluate each token's standalone contribution and counterfactual indispensability to define a token-level causal completeness reward. This reward is used to construct a causally informed advantage function within the GRPO optimization framework, encouraging the model to focus on tokens that are both causally sufficient and necessary for accurate generation. Experimental results across various benchmark datasets and tasks demonstrate the effectiveness of our approach, which effectively mitigates hallucinations in MLLMs.
☆ The State Of TTS: A Case Study with Human Fooling Rates
While subjective evaluations in recent years indicate rapid progress in TTS, can current TTS systems truly pass a human deception test in a Turing-like evaluation? We introduce Human Fooling Rate (HFR), a metric that directly measures how often machine-generated speech is mistaken for human. Our large-scale evaluation of open-source and commercial TTS models reveals critical insights: (i) CMOS-based claims of human parity often fail under deception testing, (ii) TTS progress should be benchmarked on datasets where human speech achieves high HFRs, as evaluating against monotonous or less expressive reference samples sets a low bar, (iii) Commercial models approach human deception in zero-shot settings, while open-source systems still struggle with natural conversational speech; (iv) Fine-tuning on high-quality data improves realism but does not fully bridge the gap. Our findings underscore the need for more realistic, human-centric evaluations alongside existing subjective tests.
comment: Accepted at InterSpeech 2025
☆ ToxicTAGS: Decoding Toxic Memes with Rich Tag Annotations
The 2025 Global Risks Report identifies state-based armed conflict and societal polarisation among the most pressing global threats, with social media playing a central role in amplifying toxic discourse. Memes, as a widely used mode of online communication, often serve as vehicles for spreading harmful content. However, limitations in data accessibility and the high cost of dataset curation hinder the development of robust meme moderation systems. To address this challenge, in this work, we introduce a first-of-its-kind dataset of 6,300 real-world meme-based posts annotated in two stages: (i) binary classification into toxic and normal, and (ii) fine-grained labelling of toxic memes as hateful, dangerous, or offensive. A key feature of this dataset is that it is enriched with auxiliary metadata of socially relevant tags, enhancing the context of each meme. In addition, we propose a tag generation module that produces socially grounded tags, because most in-the-wild memes often do not come with tags. Experimental results show that incorporating these tags substantially enhances the performance of state-of-the-art VLMs detection tasks. Our contributions offer a novel and scalable foundation for improved content moderation in multimodal online environments.
☆ Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap
Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.
comment: Our code and data are available at https://github.com/Difficulty-Based-Preference-Data-Select/Difficulty-Based-Preference-Data-Select
☆ Multilingual Source Tracing of Speech Deepfakes: A First Benchmark SP
Recent progress in generative AI has made it increasingly easy to create natural-sounding deepfake speech from just a few seconds of audio. While these tools support helpful applications, they also raise serious concerns by making it possible to generate convincing fake speech in many languages. Current research has largely focused on detecting fake speech, but little attention has been given to tracing the source models used to generate it. This paper introduces the first benchmark for multilingual speech deepfake source tracing, covering both mono- and cross-lingual scenarios. We comparatively investigate DSP- and SSL-based modeling; examine how SSL representations fine-tuned on different languages impact cross-lingual generalization performance; and evaluate generalization to unseen languages and speakers. Our findings offer the first comprehensive insights into the challenges of identifying speech generation models when training and inference languages differ. The dataset, protocol and code are available at https://github.com/xuanxixi/Multilingual-Source-Tracing.
comment: Accepted at Interspeech SPSC 2025 - 5th Symposium on Security and Privacy in Speech Communication (Oral)
☆ COPO: Consistency-Aware Policy Optimization
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.
☆ AgREE: Agentic Reasoning for Knowledge Graph Completion on Emerging Entities
Open-domain Knowledge Graph Completion (KGC) faces significant challenges in an ever-changing world, especially when considering the continual emergence of new entities in daily news. Existing approaches for KGC mainly rely on pretrained language models' parametric knowledge, pre-constructed queries, or single-step retrieval, typically requiring substantial supervision and training data. Even so, they often fail to capture comprehensive and up-to-date information about unpopular and/or emerging entities. To this end, we introduce Agentic Reasoning for Emerging Entities (AgREE), a novel agent-based framework that combines iterative retrieval actions and multi-step reasoning to dynamically construct rich knowledge graph triplets. Experiments show that, despite requiring zero training efforts, AgREE significantly outperforms existing methods in constructing knowledge graph triplets, especially for emerging entities that were not seen during language models' training processes, outperforming previous methods by up to 13.7%. Moreover, we propose a new evaluation methodology that addresses a fundamental weakness of existing setups and a new benchmark for KGC on emerging entities. Our work demonstrates the effectiveness of combining agent-based reasoning with strategic information retrieval for maintaining up-to-date knowledge graphs in dynamic information environments.
☆ Unveiling Over-Memorization in Finetuning LLMs for Reasoning Tasks
The pretrained large language models (LLMs) are finetuned with labeled data for better instruction following ability and alignment with human values. In this paper, we study the learning dynamics of LLM finetuning on reasoning tasks and reveal the uncovered over-memorization phenomenon during a specific stage of LLM finetuning. At this stage, the LLMs have excessively memorized training data and exhibit high test perplexity while maintaining good test accuracy. We investigate the conditions that lead to LLM over-memorization and find that training epochs and large learning rates contribute to this issue. Although models with over-memorization demonstrate comparable test accuracy to normal models, they suffer from reduced robustness, poor out-of-distribution generalization, and decreased generation diversity. Our experiments unveil the over-memorization to be broadly applicable across different tasks, models, and finetuning methods. Our research highlights that overparameterized, extensively finetuned LLMs exhibit unique learning dynamics distinct from traditional machine learning models. Based on our observations of over-memorization, we provide recommendations on checkpoint and learning rate selection during finetuning.
☆ GM-PRM: A Generative Multimodal Process Reward Model for Multimodal Mathematical Reasoning
Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities but often struggle with complex, multi-step mathematical reasoning, where minor errors in visual perception or logical deduction can lead to complete failure. While Process Reward Models (PRMs) offer step-by-step supervision, existing multimodal PRMs are limited to being binary verifiers that can identify but not correct errors, offering little explanatory power. To address these deficiencies, we introduce the Generative Multimodal Process Reward Model (GM-PRM), a novel paradigm that transforms the PRM from a passive judge into an active reasoning collaborator. Instead of a simple scalar score, GM-PRM provides a fine-grained, interpretable analysis of each reasoning step, evaluating its step intent, visual alignment, and logical soundness. More critically, GM-PRM is trained to generate a corrected version of the first erroneous step it identifies. This unique corrective capability enables our new test-time inference strategy, Refined Best-of-N (Refined-BoN). This framework actively enhances solution quality by using the PRM's generated correction to guide the policy model toward a more promising reasoning trajectory, thereby improving the diversity and correctness of the solution pool. We demonstrate that GM-PRM achieves state-of-the-art results on multiple multimodal math benchmarks, significantly boosting policy model performance with remarkable data efficiency, requiring only a 20K-sample training dataset. Our code will be released upon acceptance.
☆ ToolGrad: Efficient Tool-use Dataset Generation with Textual "Gradients"
Prior work synthesizes tool-use LLM datasets by first generating a user query, followed by complex tool-use annotations like DFS. This leads to inevitable annotation failures and low efficiency in data generation. We introduce ToolGrad, an agentic framework that inverts this paradigm. ToolGrad first constructs valid tool-use chains through an iterative process guided by textual "gradients", and then synthesizes corresponding user queries. This "answer-first" approach led to ToolGrad-5k, a dataset generated with more complex tool use, lower cost, and 100% pass rate. Experiments show that models trained on ToolGrad-5k outperform those on expensive baseline datasets and proprietary LLMs, even on OOD benchmarks.
☆ Efficient Strategy for Improving Large Language Model (LLM) Capabilities
Large Language Models (LLMs) have become a milestone in the field of artificial intelligence and natural language processing. However, their large-scale deployment remains constrained by the need for significant computational resources. This work proposes starting from a base model to explore and combine data processing and careful data selection techniques, training strategies, and architectural adjustments to improve the efficiency of LLMs in resource-constrained environments and within a delimited knowledge base. The methodological approach included defining criteria for building reliable datasets, conducting controlled experiments with different configurations, and systematically evaluating the resulting variants in terms of capability, versatility, response time, and safety. Finally, comparative tests were conducted to measure the performance of the developed variants and to validate the effectiveness of the proposed strategies. This work is based on the master's thesis in Systems and Computer Engineering titled "Efficient Strategy for Improving the Capabilities of Large Language Models (LLMs)".
comment: Based on master's thesis in Systems and Computer Engineering, Universidad Nacional de Colombia (2025)
☆ PAIRS: Parametric-Verified Adaptive Information Retrieval and Selection for Efficient RAG
Retrieval-Augmented Generation (RAG) has become a cornerstone technique for enhancing large language models (LLMs) with external knowledge. However, current RAG systems face two critical limitations: (1) they inefficiently retrieve information for every query, including simple questions that could be resolved using the LLM's parametric knowledge alone, and (2) they risk retrieving irrelevant documents when queries contain sparse information signals. To address these gaps, we introduce Parametric-verified Adaptive Information Retrieval and Selection (PAIRS), a training-free framework that integrates parametric and retrieved knowledge to adaptively determine whether to retrieve and how to select external information. Specifically, PAIRS employs a dual-path generation mechanism: First, the LLM produces both a direct answer and a context-augmented answer using self-generated pseudo-context. When these outputs converge, PAIRS bypasses external retrieval entirely, dramatically improving the RAG system's efficiency. For divergent cases, PAIRS activates a dual-path retrieval (DPR) process guided by both the original query and self-generated contextual signals, followed by an Adaptive Information Selection (AIS) module that filters documents through weighted similarity to both sources. This simple yet effective approach can not only enhance efficiency by eliminating unnecessary retrievals but also improve accuracy through contextually guided retrieval and adaptive information selection. Experimental results on six question-answering (QA) benchmarks show that PAIRS reduces retrieval costs by around 25% (triggering for only 75% of queries) while still improving accuracy-achieving +1.1% EM and +1.0% F1 over prior baselines on average.
☆ DTPA: Dynamic Token-level Prefix Augmentation for Controllable Text Generation
Controllable Text Generation (CTG) is a vital subfield in Natural Language Processing (NLP), aiming to generate text that aligns with desired attributes. However, previous studies commonly focus on the quality of controllable text generation for short sequences, while the generation of long-form text remains largely underexplored. In this paper, we observe that the controllability of texts generated by the powerful prefix-based method Air-Decoding tends to decline with increasing sequence length, which we hypothesize primarily arises from the observed decay in attention to the prefixes. Meanwhile, different types of prefixes including soft and hard prefixes are also key factors influencing performance. Building on these insights, we propose a lightweight and effective framework called Dynamic Token-level Prefix Augmentation (DTPA) based on Air-Decoding for controllable text generation. Specifically, it first selects the optimal prefix type for a given task. Then we dynamically amplify the attention to the prefix for the attribute distribution to enhance controllability, with a scaling factor growing exponentially as the sequence length increases. Moreover, based on the task, we optionally apply a similar augmentation to the original prompt for the raw distribution to balance text quality. After attribute distribution reconstruction, the generated text satisfies the attribute constraints well. Experiments on multiple CTG tasks demonstrate that DTPA generally outperforms other methods in attribute control while maintaining competitive fluency, diversity, and topic relevance. Further analysis highlights DTPA's superior effectiveness in long text generation.
☆ ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Motion sensor time-series are central to human activity recognition (HAR), with applications in health, sports, and smart devices. However, existing methods are trained for fixed activity sets and require costly retraining when new behaviours or sensor setups appear. Recent attempts to use large language models (LLMs) for HAR, typically by converting signals into text or images, suffer from limited accuracy and lack verifiable interpretability. We propose ZARA, the first agent-based framework for zero-shot, explainable HAR directly from raw motion time-series. ZARA integrates an automatically derived pair-wise feature knowledge base that captures discriminative statistics for every activity pair, a multi-sensor retrieval module that surfaces relevant evidence, and a hierarchical agent pipeline that guides the LLM to iteratively select features, draw on this evidence, and produce both activity predictions and natural-language explanations. ZARA enables flexible and interpretable HAR without any fine-tuning or task-specific classifiers. Extensive experiments on 8 HAR benchmarks show that ZARA achieves SOTA zero-shot performance, delivering clear reasoning while exceeding the strongest baselines by 2.53x in macro F1. Ablation studies further confirm the necessity of each module, marking ZARA as a promising step toward trustworthy, plug-and-play motion time-series analysis. Our codes are available at https://github.com/zechenli03/ZARA.
☆ Step More: Going Beyond Single Backpropagation in Meta Learning Based Model Editing
Large Language Models (LLMs) underpin many AI applications, but their static nature makes updating knowledge costly. Model editing offers an efficient alternative by injecting new information through targeted parameter modifications. In particular, meta-learning-based model editing (MLBME) methods have demonstrated notable advantages in both editing effectiveness and efficiency. Despite this, we find that MLBME exhibits suboptimal performance in low-data scenarios, and its training efficiency is bottlenecked by the computation of KL divergence. To address these, we propose $\textbf{S}$tep $\textbf{M}$ore $\textbf{Edit}$ ($\textbf{SMEdit}$), a novel MLBME method that adopts $\textbf{M}$ultiple $\textbf{B}$ackpro$\textbf{P}$agation $\textbf{S}$teps ($\textbf{MBPS}$) to improve editing performance under limited supervision and a norm regularization on weight updates to improve training efficiency. Experimental results on two datasets and two LLMs demonstrate that SMEdit outperforms prior MLBME baselines and the MBPS strategy can be seamlessly integrated into existing methods to further boost their performance. Our code will be released soon.
☆ HarmonyGuard: Toward Safety and Utility in Web Agents via Adaptive Policy Enhancement and Dual-Objective Optimization
Large language models enable agents to autonomously perform tasks in open web environments. However, as hidden threats within the web evolve, web agents face the challenge of balancing task performance with emerging risks during long-sequence operations. Although this challenge is critical, current research remains limited to single-objective optimization or single-turn scenarios, lacking the capability for collaborative optimization of both safety and utility in web environments. To address this gap, we propose HarmonyGuard, a multi-agent collaborative framework that leverages policy enhancement and objective optimization to jointly improve both utility and safety. HarmonyGuard features a multi-agent architecture characterized by two fundamental capabilities: (1) Adaptive Policy Enhancement: We introduce the Policy Agent within HarmonyGuard, which automatically extracts and maintains structured security policies from unstructured external documents, while continuously updating policies in response to evolving threats. (2) Dual-Objective Optimization: Based on the dual objectives of safety and utility, the Utility Agent integrated within HarmonyGuard performs the Markovian real-time reasoning to evaluate the objectives and utilizes metacognitive capabilities for their optimization. Extensive evaluations on multiple benchmarks show that HarmonyGuard improves policy compliance by up to 38% and task completion by up to 20% over existing baselines, while achieving over 90% policy compliance across all tasks. Our project is available here: https://github.com/YurunChen/HarmonyGuard.
☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
☆ Transferring Expert Cognitive Models to Social Robots via Agentic Concept Bottleneck Models
Successful group meetings, such as those implemented in group behavioral-change programs, work meetings, and other social contexts, must promote individual goal setting and execution while strengthening the social relationships within the group. Consequently, an ideal facilitator must be sensitive to the subtle dynamics of disengagement, difficulties with individual goal setting and execution, and interpersonal difficulties that signal a need for intervention. The challenges and cognitive load experienced by facilitators create a critical gap for an embodied technology that can interpret social exchanges while remaining aware of the needs of the individuals in the group and providing transparent recommendations that go beyond powerful but "black box" foundation models (FMs) that identify social cues. We address this important demand with a social robot co-facilitator that analyzes multimodal meeting data and provides discreet cues to the facilitator. The robot's reasoning is powered by an agentic concept bottleneck model (CBM), which makes decisions based on human-interpretable concepts like participant engagement and sentiments, ensuring transparency and trustworthiness. Our core contribution is a transfer learning framework that distills the broad social understanding of an FM into our specialized and transparent CBM. This concept-driven system significantly outperforms direct zero-shot FMs in predicting the need for intervention and enables real-time human correction of its reasoning. Critically, we demonstrate robust knowledge transfer: the model generalizes across different groups and successfully transfers the expertise of senior human facilitators to improve the performance of novices. By transferring an expert's cognitive model into an interpretable robotic partner, our work provides a powerful blueprint for augmenting human capabilities in complex social domains.
comment: 27 pages, 7 figures
☆ Are Today's LLMs Ready to Explain Well-Being Concepts?
Well-being encompasses mental, physical, and social dimensions essential to personal growth and informed life decisions. As individuals increasingly consult Large Language Models (LLMs) to understand well-being, a key challenge emerges: Can LLMs generate explanations that are not only accurate but also tailored to diverse audiences? High-quality explanations require both factual correctness and the ability to meet the expectations of users with varying expertise. In this work, we construct a large-scale dataset comprising 43,880 explanations of 2,194 well-being concepts, generated by ten diverse LLMs. We introduce a principle-guided LLM-as-a-judge evaluation framework, employing dual judges to assess explanation quality. Furthermore, we show that fine-tuning an open-source LLM using Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) can significantly enhance the quality of generated explanations. Our results reveal: (1) The proposed LLM judges align well with human evaluations; (2) explanation quality varies significantly across models, audiences, and categories; and (3) DPO- and SFT-finetuned models outperform their larger counterparts, demonstrating the effectiveness of preference-based learning for specialized explanation tasks.
comment: 9 pages, 4 figures, 3 tables
☆ Confidence-Weighted Token Set Cover for Early Hypothesis Pruning in Self-Consistency
Despite its simplicity and efficacy, the high token expenditure of self-consistency can limit its practical utility. Here we investigate if self-consistency can be made more token-efficient for long chain-of-thought reasoning tasks, while preserving its parallelism, through early hypothesis pruning. Concretely, we generate all solutions in parallel, but periodically prune intermediate hypotheses that are deemed unnecessary based on two lightweight indicators: (a) the model's own confidence in individual hypotheses, and (b) lexical coverage of all current hypotheses by candidate subsets that are under consideration for continued retention. We design a fast weighted set cover algorithm that utilizes the two indicators; our evaluation of five LLMs on three math benchmarks shows that this method can improve token efficiency for all models, by 10-35% in many cases.
☆ I Think, Therefore I Am Under-Qualified? A Benchmark for Evaluating Linguistic Shibboleth Detection in LLM Hiring Evaluations
This paper introduces a comprehensive benchmark for evaluating how Large Language Models (LLMs) respond to linguistic shibboleths: subtle linguistic markers that can inadvertently reveal demographic attributes such as gender, social class, or regional background. Through carefully constructed interview simulations using 100 validated question-response pairs, we demonstrate how LLMs systematically penalize certain linguistic patterns, particularly hedging language, despite equivalent content quality. Our benchmark generates controlled linguistic variations that isolate specific phenomena while maintaining semantic equivalence, which enables the precise measurement of demographic bias in automated evaluation systems. We validate our approach along multiple linguistic dimensions, showing that hedged responses receive 25.6% lower ratings on average, and demonstrate the benchmark's effectiveness in identifying model-specific biases. This work establishes a foundational framework for detecting and measuring linguistic discrimination in AI systems, with broad applications to fairness in automated decision-making contexts.
☆ ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.
comment: Code: https://github.com/PKU-AICare/ConfAgents
☆ Advancing Hate Speech Detection with Transformers: Insights from the MetaHate
Hate speech is a widespread and harmful form of online discourse, encompassing slurs and defamatory posts that can have serious social, psychological, and sometimes physical impacts on targeted individuals and communities. As social media platforms such as X (formerly Twitter), Facebook, Instagram, Reddit, and others continue to facilitate widespread communication, they also become breeding grounds for hate speech, which has increasingly been linked to real-world hate crimes. Addressing this issue requires the development of robust automated methods to detect hate speech in diverse social media environments. Deep learning approaches, such as vanilla recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs), have achieved good results, but are often limited by issues such as long-term dependencies and inefficient parallelization. This study represents the comprehensive exploration of transformer-based models for hate speech detection using the MetaHate dataset--a meta-collection of 36 datasets with 1.2 million social media samples. We evaluate multiple state-of-the-art transformer models, including BERT, RoBERTa, GPT-2, and ELECTRA, with fine-tuned ELECTRA achieving the highest performance (F1 score: 0.8980). We also analyze classification errors, revealing challenges with sarcasm, coded language, and label noise.
comment: Accepted to the Deviant Dynamics in Digital Spaces workshop at ASONAM 2025
☆ RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
☆ Fine-Tuning Small Language Models (SLMs) for Autonomous Web-based Geographical Information Systems (AWebGIS)
Autonomous web-based geographical information systems (AWebGIS) aim to perform geospatial operations from natural language input, providing intuitive, intelligent, and hands-free interaction. However, most current solutions rely on cloud-based large language models (LLMs), which require continuous internet access and raise users' privacy and scalability issues due to centralized server processing. This study compares three approaches to enabling AWebGIS: (1) a fully-automated online method using cloud-based LLMs (e.g., Cohere); (2) a semi-automated offline method using classical machine learning classifiers such as support vector machine and random forest; and (3) a fully autonomous offline (client-side) method based on a fine-tuned small language model (SLM), specifically T5-small model, executed in the client's web browser. The third approach, which leverages SLMs, achieved the highest accuracy among all methods, with an exact matching accuracy of 0.93, Levenshtein similarity of 0.99, and recall-oriented understudy for gisting evaluation ROUGE-1 and ROUGE-L scores of 0.98. Crucially, this client-side computation strategy reduces the load on backend servers by offloading processing to the user's device, eliminating the need for server-based inference. These results highlight the feasibility of browser-executable models for AWebGIS solutions.
☆ Federal Reserve Communication and the COVID-19 Pandemic
In this study, we examine the Federal Reserve's communication strategies during the COVID-19 pandemic, comparing them with communication during previous periods of economic stress. Using specialized dictionaries tailored to COVID-19, unconventional monetary policy (UMP), and financial stability, combined with sentiment analysis and topic modeling techniques, we identify a distinct focus in Fed communication during the pandemic on financial stability, market volatility, social welfare, and UMP, characterized by notable contextual uncertainty. Through comparative analysis, we juxtapose the Fed's communication during the COVID-19 crisis with its responses during the dot-com and global financial crises, examining content, sentiment, and timing dimensions. Our findings reveal that Fed communication and policy actions were more reactive to the COVID-19 crisis than to previous crises. Additionally, declining sentiment related to financial stability in interest rate announcements and minutes anticipated subsequent accommodative monetary policy decisions. We further document that communicating about UMP has become the "new normal" for the Fed's Federal Open Market Committee meeting minutes and Chairman's speeches since the Global Financial Crisis, reflecting an institutional adaptation in communication strategy following periods of economic distress. These findings contribute to our understanding of how central bank communication evolves during crises and how communication strategies adapt to exceptional economic circumstances.
☆ Persistent Instability in LLM's Personality Measurements: Effects of Scale, Reasoning, and Conversation History
Large language models require consistent behavioral patterns for safe deployment, yet their personality-like traits remain poorly understood. We present PERSIST (PERsonality Stability in Synthetic Text), a comprehensive evaluation framework testing 25+ open-source models (1B-671B parameters) across 500,000+ responses. Using traditional (BFI-44, SD3) and novel LLM-adapted personality instruments, we systematically vary question order, paraphrasing, personas, and reasoning modes. Our findings challenge fundamental deployment assumptions: (1) Even 400B+ models exhibit substantial response variability (SD > 0.4); (2) Minor prompt reordering alone shifts personality measurements by up to 20%; (3) Interventions expected to stabilize behavior, such as chain-of-thought reasoning, detailed personas instruction, inclusion of conversation history, can paradoxically increase variability; (4) LLM-adapted instruments show equal instability to human-centric versions, confirming architectural rather than translational limitations. This persistent instability across scales and mitigation strategies suggests current LLMs lack the foundations for genuine behavioral consistency. For safety-critical applications requiring predictable behavior, these findings indicate that personality-based alignment strategies may be fundamentally inadequate.
☆ Pitch Accent Detection improves Pretrained Automatic Speech Recognition
We show the performance of Automatic Speech Recognition (ASR) systems that use semi-supervised speech representations can be boosted by a complimentary pitch accent detection module, by introducing a joint ASR and pitch accent detection model. The pitch accent detection component of our model achieves a significant improvement on the state-of-the-art for the task, closing the gap in F1-score by 41%. Additionally, the ASR performance in joint training decreases WER by 28.3% on LibriSpeech, under limited resource fine-tuning. With these results, we show the importance of extending pretrained speech models to retain or re-learn important prosodic cues such as pitch accent.
☆ Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization
Tokenization is the first -- and often least scrutinized -- step of most NLP pipelines. Standard algorithms for learning tokenizers rely on frequency-based objectives, which favor languages dominant in the training data and consequently leave lower-resource languages with tokenizations that are disproportionately longer, morphologically implausible, or even riddled with placeholders. This phenomenon ultimately amplifies computational and financial inequalities between users from different language backgrounds. To remedy this, we introduce Parity-aware Byte Pair Encoding (BPE), a variant of the widely-used BPE algorithm. At every merge step, Parity-aware BPE maximizes the compression gain of the currently worst-compressed language, trading a small amount of global compression for cross-lingual parity. We find empirically that Parity-aware BPE leads to more equitable token counts across languages, with negligible impact on global compression rate and no substantial effect on language-model performance in downstream tasks.
☆ Enhancing Dialogue Annotation with Speaker Characteristics Leveraging a Frozen LLM
In dialogue transcription pipelines, Large Language Models (LLMs) are frequently employed in post-processing to improve grammar, punctuation, and readability. We explore a complementary post-processing step: enriching transcribed dialogues by adding metadata tags for speaker characteristics such as age, gender, and emotion. Some of the tags are global to the entire dialogue, while some are time-variant. Our approach couples frozen audio foundation models, such as Whisper or WavLM, with a frozen LLAMA language model to infer these speaker attributes, without requiring task-specific fine-tuning of either model. Using lightweight, efficient connectors to bridge audio and language representations, we achieve competitive performance on speaker profiling tasks while preserving modularity and speed. Additionally, we demonstrate that a frozen LLAMA model can compare x-vectors directly, achieving an Equal Error Rate of 8.8% in some scenarios.
comment: Accepted in the 2025 IEEE Automatic Speech Recognition and Understanding Workshop
♻ ☆ Beyond Adapter Retrieval: Latent Geometry-Preserving Composition via Sparse Task Projection
Recent advances in parameter-efficient transfer learning have demonstrated the utility of composing LoRA adapters from libraries of pretrained modules. However, most existing approaches rely on simple retrieval heuristics or uniform averaging, which overlook the latent structure of task relationships in representation space. We propose a new framework for adapter reuse that moves beyond retrieval, formulating adapter composition as a geometry-aware sparse reconstruction problem. Specifically, we represent each task by a latent prototype vector derived from the base model's encoder and aim to approximate the target task prototype as a sparse linear combination of retrieved reference prototypes, under an $\ell_1$-regularized optimization objective. The resulting combination weights are then used to blend the corresponding LoRA adapters, yielding a composite adapter tailored to the target task. This formulation not only preserves the local geometric structure of the task representation manifold, but also promotes interpretability and efficient reuse by selecting a minimal set of relevant adapters. We demonstrate the effectiveness of our approach across multiple domains-including medical image segmentation, medical report generation and image synthesis. Our results highlight the benefit of coupling retrieval with latent geometry-aware optimization for improved zero-shot generalization.
♻ ☆ Ultra Memory-Efficient On-FPGA Training of Transformers via Tensor-Compressed Optimization
Transformer models have achieved state-of-the-art performance across a wide range of machine learning tasks. There is growing interest in training transformers on resource-constrained edge devices due to considerations such as privacy, domain adaptation, and on-device scientific machine learning. However, the significant computational and memory demands required for transformer training often exceed the capabilities of an edge device. Leveraging low-rank tensor compression, this paper presents the first on-FPGA accelerator for end-to-end transformer training. On the algorithm side, we present a bi-directional contraction flow for tensorized transformer training, significantly reducing the computational FLOPS and intra-layer memory costs compared to existing tensor operations. On the hardware side, we store all highly compressed model parameters and gradient information on chip, creating an on-chip-memory-only framework for each stage in training. This reduces off-chip communication and minimizes latency and energy costs. Additionally, we implement custom computing kernels for each training stage and employ intra-layer parallelism and pipe-lining to further enhance run-time and memory efficiency. Through experiments on transformer models within $36.7$ to $93.5$ MB using FP-32 data formats on the ATIS dataset, our tensorized FPGA accelerator could conduct single-batch end-to-end training on the AMD Alevo U50 FPGA, with a memory budget of less than $6$-MB BRAM and $22.5$-MB URAM. Compared to uncompressed training on the NVIDIA RTX 3090 GPU, our on-FPGA training achieves a memory reduction of $30\times$ to $51\times$. Our FPGA accelerator also achieves up to $3.6\times$ less energy cost per epoch compared with tensor Transformer training on an NVIDIA RTX 3090 GPU.
♻ ☆ R1-RE: Cross-Domain Relation Extraction with RLVR
Relation extraction (RE) is a core task in natural language processing. Traditional approaches typically frame RE as a supervised learning problem, directly mapping context to labels-an approach that often suffers from poor out-of-domain (OOD) generalization. Inspired by the workflow of human annotators, we reframe RE as a reasoning task guided by annotation guidelines and introduce R1-RE, the first reinforcement learning with verifiable reward (RLVR) framework for RE tasks. Our method elicits the reasoning abilities of small language models for annotation tasks, resulting in significantly improved OOD robustness. We evaluate our approach on the public Sem-2010 dataset and a private MDKG dataset. The R1-RE-7B model attains an average OOD accuracy of approximately 70%, on par with leading proprietary models such as GPT-4o. Additionally, our comprehensive analysis provides novel insights into the training dynamics and emergent reasoning behaviors of the RLVR paradigm for RE.
comment: 14 pages, 7 figures
♻ ☆ FinanceReasoning: Benchmarking Financial Numerical Reasoning More Credible, Comprehensive and Challenging ACL 2025
We introduce FinanceReasoning, a novel benchmark designed to evaluate the reasoning capabilities of large reasoning models (LRMs) in financial numerical reasoning problems. Compared to existing benchmarks, our work provides three key advancements. (1) Credibility: We update 15.6% of the questions from four public datasets, annotating 908 new questions with detailed Python solutions and rigorously refining evaluation standards. This enables an accurate assessment of the reasoning improvements of LRMs. (2) Comprehensiveness: FinanceReasoning covers 67.8% of financial concepts and formulas, significantly surpassing existing datasets. Additionally, we construct 3,133 Python-formatted functions, which enhances LRMs' financial reasoning capabilities through refined knowledge (e.g., 83.2% $\rightarrow$ 91.6% for GPT-4o). (3) Challenge: Models are required to apply multiple financial formulas for precise numerical reasoning on 238 Hard problems. The best-performing model (i.e., OpenAI o1 with PoT) achieves 89.1% accuracy, yet LRMs still face challenges in numerical precision. We demonstrate that combining Reasoner and Programmer models can effectively enhance LRMs' performance (e.g., 83.2% $\rightarrow$ 87.8% for DeepSeek-R1). Our work paves the way for future research on evaluating and improving LRMs in domain-specific complex reasoning tasks.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay ICCV 2025
Despite the remarkable performance of multimodal large language models (MLLMs) across diverse tasks, the substantial training and inference costs impede their advancement. In this paper, we propose p-MoD, an efficient MLLM architecture that significantly reduces training and inference costs while maintaining model performance. The majority of computation in MLLMs stems from the overwhelming volume of vision tokens processed by the transformer-based LLM. Accordingly, we leverage the Mixture-of-Depths (MoD) mechanism, where each LLM layer selects essential vision tokens to process while skipping redundant ones. However, integrating MoD into MLLMs is non-trivial. To address the challenges of training and inference stability as well as limited training data, we adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing). Moreover, we observe that vision tokens exhibit higher redundancy in deeper layers and thus design a progressive ratio decay (PRD) strategy, which gradually reduces the token retention ratio layer by layer, employing a shifted cosine schedule. This crucial design fully unleashes the potential of MoD, significantly boosting the efficiency and performance of our models. Extensive experiments on two baseline models across 15 benchmarks show that our model matches or even surpasses the performance of corresponding baselines, while requiring only 55.6% TFLOPs and 53.7% KV cache storage during inference, and 77.7% GPU hours during training.
comment: Accepted by ICCV 2025; Code released at https://github.com/MCG-NJU/p-MoD
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Strong Priority and Determinacy in Timed CCS
Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.
comment: Change Notes (06.08.25): Streamlined the definition of coherence and non-interference; Corrections in Def.~14 for coherence, adding condition on residual transitions; Adjusted coding of Esterel signals (Ex.~11) to match adjusted Def.~14; To reflect changed Def.~14, use the term "c-coherence''; Minor rewrite of Sec.~2.3 and Sec.~4; Further corrections and revisions in Appendices
♻ ☆ Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
♻ ☆ Evaluating Robustness of LLMs in Question Answering on Multilingual Noisy OCR Data CIKM 2025
Optical Character Recognition (OCR) plays a crucial role in digitizing historical and multilingual documents, yet OCR errors - imperfect extraction of text, including character insertion, deletion, and substitution can significantly impact downstream tasks like question-answering (QA). In this work, we conduct a comprehensive analysis of how OCR-induced noise affects the performance of Multilingual QA Systems. To support this analysis, we introduce a multilingual QA dataset MultiOCR-QA, comprising 50K question-answer pairs across three languages, English, French, and German. The dataset is curated from OCR-ed historical documents, which include different levels and types of OCR noise. We then evaluate how different state-of-the-art Large Language models (LLMs) perform under different error conditions, focusing on three major OCR error types. Our findings show that QA systems are highly prone to OCR-induced errors and perform poorly on noisy OCR text. By comparing model performance on clean versus noisy texts, we provide insights into the limitations of current approaches and emphasize the need for more noise-resilient QA systems in historical digitization contexts.
comment: Accepted at CIKM 2025
♻ ☆ Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
♻ ☆ Mixup Model Merge: Enhancing Model Merging Performance through Randomized Linear Interpolation
Model merging aims to integrate multiple task-specific models into a unified model that inherits the capabilities of the task-specific models, without additional training. Existing model merging methods often lack consideration of the varying contribution ratios of different task-specific models to the final merged model. In this paper, we propose Mixup Model Merge (M3), a simple yet effective method inspired by the randomized linear interpolation strategy from the Mixup data augmentation technique. M3 performs randomized linear interpolation in parameter space between two task-specific LLMs, where interpolation coefficients are sampled from a Beta distribution to explore diverse contribution ratios. This controllable randomness allows M3 to outperform standard equal-ratio merging by discovering better contribution ratio combinations. Extensive experiments show that M3 significantly (1) improves merged LLM performance across tasks, (2) enhances out-of-distribution and adversarial robustness, (3) outperforms the positive effects of the sparsification method DARE on model merging and can be further combined with DARE to achieve superior results, and (4) balances exploration efficiency and diversity in contribution ratios by tuning the Beta distribution's shape parameters. The code is provided in the supplementary materials.
comment: 15 pages
♻ ☆ Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models ACL 2025
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose four dimensions to evaluate data quality: professionalism, readability, reasoning, and cleanliness. We further introduce Meta-rater,a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with advantages that scale to models as large as 7.2B parameters. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability. To advance future research, we release scripts, data, and models at https://github.com/opendatalab/Meta-rater.
comment: ACL 2025 Best Theme Paper Award
♻ ☆ LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 10 pages, 7 figures, working in progress
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.
♻ ☆ Automatically Interpreting Millions of Features in Large Language Models
While the activations of neurons in deep neural networks usually do not have a simple human-understandable interpretation, sparse autoencoders (SAEs) can be used to transform these activations into a higher-dimensional latent space which may be more easily interpretable. However, these SAEs can have millions of distinct latent features, making it infeasible for humans to manually interpret each one. In this work, we build an open-source automated pipeline to generate and evaluate natural language explanations for SAE features using LLMs. We test our framework on SAEs of varying sizes, activation functions, and losses, trained on two different open-weight LLMs. We introduce five new techniques to score the quality of explanations that are cheaper to run than the previous state of the art. One of these techniques, intervention scoring, evaluates the interpretability of the effects of intervening on a feature, which we find explains features that are not recalled by existing methods. We propose guidelines for generating better explanations that remain valid for a broader set of activating contexts, and discuss pitfalls with existing scoring techniques. We use our explanations to measure the semantic similarity of independently trained SAEs, and find that SAEs trained on nearby layers of the residual stream are highly similar. Our large-scale analysis confirms that SAE latents are indeed much more interpretable than neurons, even when neurons are sparsified using top-$k$ postprocessing. Our code is available at https://github.com/EleutherAI/sae-auto-interp, and our explanations are available at https://huggingface.co/datasets/EleutherAI/auto_interp_explanations.
♻ ☆ Inside-Out: Hidden Factual Knowledge in LLMs
This work presents a framework for assessing whether large language models (LLMs) encode more factual knowledge in their parameters than what they express in their outputs. While a few studies hint at this possibility, none has clearly defined or demonstrated this phenomenon. We first propose a formal definition of knowledge, quantifying it for a given question as the fraction of correct-incorrect answer pairs where the correct one is ranked higher. This gives rise to external and internal knowledge, depending on the information used to score individual answer candidates: either the model's observable token-level probabilities or its intermediate computations. Hidden knowledge arises when internal knowledge exceeds external knowledge. We then present a case study, applying this framework to three popular open-weights LLMs in a closed-book QA setup. Our results indicate that: (1) LLMs consistently encode more factual knowledge internally than what they express externally, with an average relative gap of 40%. (2) Surprisingly, some knowledge is so deeply hidden that a model can internally know an answer perfectly, yet fail to generate it even once, despite large-scale repeated sampling of 1,000 answers. This reveals fundamental limitations in the generation capabilities of LLMs, which (3) put a practical constraint on scaling test-time compute via repeated answer sampling in closed-book QA: significant performance improvements remain inaccessible because some answers are practically never sampled, yet if they were, we would be guaranteed to rank them first.
comment: Accepted to COLM 2025
♻ ☆ AUTALIC: A Dataset for Anti-AUTistic Ableist Language In Context ACL
As our understanding of autism and ableism continues to increase, so does our understanding of ableist language towards autistic people. Such language poses a significant challenge in NLP research due to its subtle and context-dependent nature. Yet, detecting anti-autistic ableist language remains underexplored, with existing NLP tools often failing to capture its nuanced expressions. We present AUTALIC, the first benchmark dataset dedicated to the detection of anti-autistic ableist language in context, addressing a significant gap in the field. The dataset comprises 2,400 autism-related sentences collected from Reddit, accompanied by surrounding context, and is annotated by trained experts with backgrounds in neurodiversity. Our comprehensive evaluation reveals that current language models, including state-of-the-art LLMs, struggle to reliably identify anti-autistic ableism and align with human judgments, underscoring their limitations in this domain. We publicly release AUTALIC along with the individual annotations which serve as a valuable resource to researchers working on ableism, neurodiversity, and also studying disagreements in annotation tasks. This dataset serves as a crucial step towards developing more inclusive and context-aware NLP systems that better reflect diverse perspectives.
comment: accepted to ACL main 2025, 9 pages, 5 figures, 7 tables
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
This paper establishes a fundamental impossibility theorem: no LLM capable performing non-trivial knowledge aggregation can simultaneously achieve truthful (internally consistent) knowledge representation, semantic information conservation, complete revelation of relevant knowledge, and knowledge-constrained optimality. This impossibility is not an engineering limitation but arises from the mathematical structure of information aggregation itself. We establish this result by describing the inference process as an auction of ideas, where distributed components compete exploiting their partial knowledge to shape responses. The proof spans three independent mathematical domains: mechanism design theory (Green-Laffont), the theory of proper scoring rules (Savage), and direct architectural analysis of transformers (Log-Sum-Exp convexity). In particular, we show how in the strictly concave settings the score of an aggregate of diverse beliefs strictly exceeds the sum of individual scores. That gap may quantify the creation of unattributable certainty or overconfidence -- the mathematical origin of both hallucination and creativity, or imagination. To support this analysis, we introduce the complementary concepts of the semantic information measure and the emergence operator to model bounded reasoning in a general setting. We prove that while bounded reasoning generates accessible information, providing valuable insights and inspirations, idealized reasoning strictly preserves semantic content. By demonstrating that hallucination and imagination are mathematically identical phenomena-grounded in the necessary violation of information conservation-this paper offers a principled foundation for managing these behaviors in advanced AI systems. Finally, we present some speculative ideas to inspire evaluation and refinements of the proposed theory.
comment: cleared mathematics, proofs and ideas explained, added missing definitions and axioms, discussion and speculation section added
♻ ☆ Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
♻ ☆ Towards Domain Specification of Embedding Models in Medicine
Medical text embedding models are foundational to a wide array of healthcare applications, ranging from clinical decision support and biomedical information retrieval to medical question answering, yet they remain hampered by two critical shortcomings. First, most models are trained on a narrow slice of medical and biological data, beside not being up to date in terms of methodology, making them ill suited to capture the diversity of terminology and semantics encountered in practice. Second, existing evaluations are often inadequate: even widely used benchmarks fail to generalize across the full spectrum of real world medical tasks. To address these gaps, we leverage MEDTE, a GTE model extensively fine-tuned on diverse medical corpora through self-supervised contrastive learning across multiple data sources, to deliver robust medical text embeddings. Alongside this model, we propose a comprehensive benchmark suite of 51 tasks spanning classification, clustering, pair classification, and retrieval modeled on the Massive Text Embedding Benchmark (MTEB) but tailored to the nuances of medical text. Our results demonstrate that this combined approach not only establishes a robust evaluation framework but also yields embeddings that consistently outperform state of the art alternatives in different tasks.
♻ ☆ How Far Can LLMs Improve from Experience? Measuring Test-Time Learning Ability in LLMs with Human Comparison
As evaluation designs of large language models may shape our trajectory toward artificial general intelligence, comprehensive and forward-looking assessment is essential. Existing benchmarks primarily assess static knowledge, while intelligence also entails the ability to rapidly learn from experience. To this end, we advocate for the evaluation of Test-time Learning, the capacity to improve performance in experience-based, reasoning-intensive tasks during test time. In this work, we propose semantic games as effective testbeds for evaluating test-time learning, due to their resistance to saturation and inherent demand for strategic reasoning. We introduce an objective evaluation framework that compares model performance under both limited and cumulative experience settings, and contains four forms of experience representation. To provide a comparative baseline, we recruit eight human participants to complete the same task. Results show that LLMs exhibit measurable test-time learning capabilities; however, their improvements are less stable under cumulative experience and progress more slowly than those observed in humans. These findings underscore the potential of LLMs as general-purpose learning machines, while also revealing a substantial intellectual gap between models and humans, irrespective of how well LLMs perform on static benchmarks.
♻ ☆ UITron-Speech: Towards Automated GUI Agents Based on Speech Instructions
Autonomous agents for Graphical User Interfaces (GUIs) are revolutionizing human-computer interaction, yet their reliance on text-based instructions imposes limitations on accessibility and convenience, particularly in hands-free scenarios. To address this issue, we propose replacing text with speech as the instruction input modality for GUI agents, and introduce UITron-Speech, which is the first end-to-end GUI agent capable of directly processing speech instructions and on-device screenshots to predict user actions. To tackle the problem of data scarcity, we synthesize high-quality speech instruction datasets using a random-speaker text-to-speech model. Additionally, we design a mixed-modality training strategy to mitigate the inherent modality imbalance in pre-trained foundation models. Furthermore, we conduct a statistical analysis of the distribution of GUI grounding prediction errors and propose a training-free two-step grounding refinement method to alleviate minor localization deviations. Extensive experiments on multiple benchmarks demonstrate that UITron-Speech achieves robust performance and superior adaptability, underscoring the feasibility and potential of speech-driven GUI agents for more accessible and intelligent human-computer interaction. Our code and datasets are available at https://github.com/UITron-hub/UITron-Speech.
♻ ☆ CharBench: Evaluating the Role of Tokenization in Character-Level Tasks
Tasks that require character-level reasoning, such as counting or locating characters within words, remain challenging for contemporary language models. A common conjecture is that language models' reliance on subword units, rather than characters, contributes to their struggles with character-level tasks, yet recent studies offer conflicting conclusions about the role of tokenization, leaving its impact unclear. To address this gap, we introduce CharBench, a comprehensive benchmark of character-level tasks that is two orders of magnitude larger than existing alternatives. We evaluate a diverse range of leading open-weight and proprietary models on CharBench and find that it presents a significant challenge to modern LLMs, with an average accuracy of 43.6% and 32.3% on some tasks. We present an in-depth analysis of how intrinsic properties of words and their segmentations into tokens correspond to model performance. For counting tasks, we find that tokenization properties are weakly correlated with correctness, while the length of the queried word and the actual character count play a more significant part. In contrast, for tasks requiring intra-word positional understanding, performance is negatively correlated with the length of the token containing the queried character, suggesting that longer tokens obscure character position information for LLMs. We encourage future work to build on the benchmark and evaluation methodology introduced here as tools for improving model performance on such tasks.
♻ ☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
comment: Published as a conference paper at COLM 2025
♻ ☆ EdgeInfinite-Instruct: Bridging SFT-Based Optimization and NPU-Level Efficiency for Edge Devices
Deploying Transformer-based large language models (LLMs) on resource-constrained edge devices for long-sequence tasks remains challenging due to the quadratic time complexity of self-attention and growing Key-Value (KV) cache demands. While existing KV cache optimizations improve memory efficiency, they often fail to reduce time to first token (TTFT) and may degrade performance through token pruning. Alternative sequence modeling architectures address some of these limitations, but typically require full retraining and lack infrastructure support. EdgeInfinite offers an efficient solution by fine-tuning only a small subset of parameters, maintaining quality while reducing both computational and memory costs, including improved TTFT. However, its instruction-following ability is limited, and it lacks mobile-specific optimizations. To address these issues, we propose EdgeInfinite-Instruct, which introduces a Segmented Supervised Fine-Tuning (S-SFT) strategy tailored to long-sequence tasks such as summarization and question answering. We further optimized EdgeInfinite-Instruct for efficient deployment on edge NPUs by employing fine-grained post-training quantization (PTQ) to reduce computational demands while maintaining accuracy, and by implementing a fixed-shape computation graph that balances memory usage and on-device efficiency through scenario-specific customization of input token and cache sizes. Experiments on long-context benchmarks and real-world mobile tasks show that our approach improves domain-specific performance while maintaining efficiency on NPU-accelerated edge devices.
comment: The data and method in the paper need to be re-audited
♻ ☆ CRAB: A Benchmark for Evaluating Curation of Retrieval-Augmented LLMs in Biomedicine
Recent development in Retrieval-Augmented Large Language Models (LLMs) have shown great promise in biomedical applications. How ever, a critical gap persists in reliably evaluating their curation ability the process by which models select and integrate relevant references while filtering out noise. To address this, we introduce the benchmark for Curation of Retrieval-Augmented LLMs in Biomedicine (CRAB), the first multilingual benchmark tailored for evaluating the biomedical curation of retrieval-augmented LLMs, available in English, French, German and Chinese. By incorporating a novel citation-based evaluation metric, CRAB quantifies the curation performance of retrieval-augmented LLMs in biomedicine. Experimental results reveal significant discrepancies in the curation performance of mainstream LLMs, underscoring the urgent need to improve it in the domain of biomedicine. Our dataset is available at https://huggingface.co/datasets/zhm0/CRAB.
♻ ☆ A Comparative Study of Specialized LLMs as Dense Retrievers
While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.
comment: Accepted by CCIR25 and published by Springer LNCS or LNAI
♻ ☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under [this https URL](https://github.com/AI45Lab/IS-Bench).
♻ ☆ Parse Trees Guided LLM Prompt Compression
Offering rich contexts to Large Language Models (LLMs) has shown to boost the performance in various tasks, but the resulting longer prompt would increase the computational cost and might exceed the input limit of LLMs. Recently, some prompt compression methods have been suggested to shorten the length of prompts by using language models to generate shorter prompts or by developing computational models to select important parts of original prompt. The generative compression methods would suffer from issues like hallucination, while the selective compression methods have not involved linguistic rules and overlook the global structure of prompt. To this end, we propose a novel selective compression method called PartPrompt. It first obtains a parse tree for each sentence based on linguistic rules, and calculates local information entropy for each node in a parse tree. These local parse trees are then organized into a global tree according to the hierarchical structure such as the dependency of sentences, paragraphs, and sections. After that, the root-ward propagation and leaf-ward propagation are proposed to adjust node values over the global tree. Finally, a recursive algorithm is developed to prune the global tree based on the adjusted node values. The experiments show that PartPrompt receives the state-of-the-art performance across various datasets, metrics, compression ratios, and target LLMs for inference. The in-depth ablation studies confirm the effectiveness of designs in PartPrompt, and other additional experiments also demonstrate its superiority in terms of the coherence of compressed prompts and in the extreme long prompt scenario.
comment: IEEE TPAMI major revision submitted
♻ ☆ HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents ICCV 2025
Recent advances in multimodal large language models (MLLMs) have enabled richer perceptual grounding for code policy generation in embodied agents. However, most existing systems lack effective mechanisms to adaptively monitor policy execution and repair codes during task completion. In this work, we introduce HyCodePolicy, a hybrid language-based control framework that systematically integrates code synthesis, geometric grounding, perceptual monitoring, and iterative repair into a closed-loop programming cycle for embodied agents. Technically, given a natural language instruction, our system first decomposes it into subgoals and generates an initial executable program grounded in object-centric geometric primitives. The program is then executed in simulation, while a vision-language model (VLM) observes selected checkpoints to detect and localize execution failures and infer failure reasons. By fusing structured execution traces capturing program-level events with VLM-based perceptual feedback, HyCodePolicy infers failure causes and repairs programs. This hybrid dual feedback mechanism enables self-correcting program synthesis with minimal human supervision. Our results demonstrate that HyCodePolicy significantly improves the robustness and sample efficiency of robot manipulation policies, offering a scalable strategy for integrating multimodal reasoning into autonomous decision-making pipelines.
comment: Accepted to ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
♻ ☆ ContextASR-Bench: A Massive Contextual Speech Recognition Benchmark
Automatic Speech Recognition (ASR) has been extensively investigated, yet prior benchmarks have largely focused on assessing the acoustic robustness of ASR models, leaving evaluations of their linguistic capabilities relatively underexplored. This largely stems from the limited parameter sizes and training corpora of conventional ASR models, leaving them with insufficient world knowledge, which is crucial for accurately recognizing named entities across diverse domains. For instance, drug and treatment names in medicine or specialized technical terms in engineering. Recent breakthroughs in Large Language Models (LLMs) and corresponding Large Audio Language Models (LALMs) have markedly enhanced the visibility of advanced context modeling and general artificial intelligence capabilities. Leveraging LLMs, we envision a unified system capable of robust speech recognition across diverse real-world domains, yet existing benchmarks are inadequate for evaluating this objective. To address this gap, we propose ContextASR-Bench: a comprehensive, large-scale benchmark designed to assess the linguistic competence of ASR systems using corpora that feature numerous named entities across multiple domains. It encompasses up to 40,000 data entries with more than 300,000 named entities across over 10 domains. Beyond the audio and its transcription, each sample provides the domain it belongs to and a list of named entities it contains, which are referred to as the context. Based on this, we introduce three evaluation modes to assess how effectively models can exploit such context to improve ASR accuracy. Extensive evaluation on ContextASR-Bench highlights that LALMs outperform conventional ASR models by a large margin thanks to the strong world knowledge and context modeling of LLMs, yet there remains ample room for further improvement. The dataset and evaluation code have been released.
comment: 16 pages, 4 figures
♻ ☆ Improved Unbiased Watermark for Large Language Models ACL 2025
As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.
comment: ACL 2025 Main Conference
♻ ☆ Evaluating the Robustness of Multimodal Agents Against Active Environmental Injection Attacks ACM MM 2025
As researchers continue to optimize AI agents for more effective task execution within operating systems, they often overlook a critical security concern: the ability of these agents to detect "impostors" within their environment. Through an analysis of the agents' operational context, we identify a significant threat-attackers can disguise malicious attacks as environmental elements, injecting active disturbances into the agents' execution processes to manipulate their decision-making. We define this novel threat as the Active Environment Injection Attack (AEIA). Focusing on the interaction mechanisms of the Android OS, we conduct a risk assessment of AEIA and identify two critical security vulnerabilities: (1) Adversarial content injection in multimodal interaction interfaces, where attackers embed adversarial instructions within environmental elements to mislead agent decision-making; and (2) Reasoning gap vulnerabilities in the agent's task execution process, which increase susceptibility to AEIA attacks during reasoning. To evaluate the impact of these vulnerabilities, we propose AEIA-MN, an attack scheme that exploits interaction vulnerabilities in mobile operating systems to assess the robustness of MLLM-based agents. Experimental results show that even advanced MLLMs are highly vulnerable to this attack, achieving a maximum attack success rate of 93% on the AndroidWorld benchmark by combining two vulnerabilities.
comment: Accepted at ACM MM 2025 Main Conference
♻ ☆ Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: The code is available at https://github.com/jongwooko/flex-judge
♻ ☆ AVG-LLaVA: An Efficient Large Multimodal Model with Adaptive Visual Granularity ACL 2025
Recently, large multimodal models (LMMs) have achieved significant advancements. When dealing with high-resolution images, dominant LMMs typically divide them into multiple local images and a global image, leading to a large number of visual tokens. In this work, we introduce AVG-LLaVA, an LMM that can adaptively select the appropriate visual granularity based on the input image and instruction. Specifically, we first apply the multiple pooling layers to obtain visual tokens at different granularities. Then we propose a visual granularity router, which includes a Transformer layer, an MLP layer, and a voter layer, used to select the appropriate visual granularity based on the image and instruction. Furthermore, we put forward RGLF, a novel training paradigm that aims at aligning the granularity predicted by the router with the preferences of the LMM, without the need for additional manually annotated data. Extensive experiments and analysis show that AVG-LLaVA achieves superior performance across 11 benchmarks, as well as significantly reduces the number of visual tokens and speeds up inference (e.g., an 85.3% reduction in visual tokens and a 2.53$\times$ increase in inference speed on the AI2D benchmark).
comment: Accepted by ACL 2025 Findings
♻ ☆ Explain Less, Understand More: Jargon Detection via Personalized Parameter-Efficient Fine-tuning
Personalizing jargon detection and explanation is essential for making technical documents accessible to readers with diverse disciplinary backgrounds. However, tailoring models to individual users typically requires substantial annotation efforts and computational resources due to user-specific finetuning. To address this, we present a systematic study of personalized jargon detection, focusing on methods that are both efficient and scalable for real-world deployment. We explore two personalization strategies: (1) lightweight fine-tuning using Low-Rank Adaptation (LoRA) on open-source models, and (2) personalized prompting, which tailors model behavior at inference time without retaining. To reflect realistic constraints, we also investigate hybrid approaches that combine limited annotated data with unsupervised user background signals. Our personalized LoRA model outperforms GPT-4 by 21.4% in F1 score and exceeds the best performing oracle baseline by 8.3%. Remarkably, our method achieves comparable performance using only 10% of the annotated training data, demonstrating its practicality for resource-constrained settings. Our study offers the first work to systematically explore efficient, low-resource personalization of jargon detection using open-source language models, offering a practical path toward scalable, user-adaptive NLP system.
♻ ☆ CAIN: Hijacking LLM-Humans Conversations via Malicious System Prompts
Large language models (LLMs) have advanced many applications, but are also known to be vulnerable to adversarial attacks. In this work, we introduce a novel security threat: hijacking AI-human conversations by manipulating LLMs' system prompts to produce malicious answers only to specific targeted questions (e.g., "Who should I vote for US President?", "Are Covid vaccines safe?"), while behaving benignly on others. This attack is detrimental as it can enable malicious actors to exercise large-scale information manipulation by spreading harmful but benign-looking system prompts online. To demonstrate such an attack, we develop CAIN, an algorithm that can automatically curate such harmful system prompts for a specific target question in a black-box setting or without the need to access the LLM's parameters. Evaluated on both open-source and commercial LLMs, CAIN demonstrates significant adversarial impact. In untargeted attacks or forcing LLMs to output incorrect answers, CAIN achieves up to 40% F1 degradation on targeted questions while preserving high accuracy on benign inputs. For targeted attacks or forcing LLMs to output specific harmful answers, CAIN achieves over 70% F1 scores on these targeted responses with minimal impact on benign questions. Our results highlight the critical need for enhanced robustness measures to safeguard the integrity and safety of LLMs in real-world applications. All source code will be publicly available.
♻ ☆ LinkQA: Synthesizing Diverse QA from Multiple Seeds Strongly Linked by Knowledge Points
The advancement of large language models (LLMs) struggles with the scarcity of high-quality, diverse training data. To address this limitation, we propose LinkSyn, a novel knowledge point (KP) graph-based synthesis framework that enables flexible control over discipline and difficulty distributions while balancing KP coverage and popularity. LinkSyn extracts KPs from question-answering (QA) seed data and constructs a KP graph to synthesize diverse QA data from multiple seeds strongly linked by KPs and sampled from graph walks. Specifically, LinkSyn incorporates (1) a knowledge distribution value function to guide the adjustment of path sampling probability and balance KP coverage and popularity during graph walks; (2) diffusion-based synthesis via DeepSeek-R1 by leveraging multiple seeds with dense logical associations along each path; and (3) high-difficulty QA enhancement within given disciplines by flexible difficulty adjustments. By executing LinkSyn, we synthesize LinkQA, a diverse multi-disciplinary QA dataset with 50B tokens. Extensive experiments on Llama-3 8B demonstrate that continual pre-training with LinkQA yields an average improvement of $\mathbf{11.51\%}$ on MMLU and CMMLU, establishing new SOTA results. LinkQA consistently enhances performance across model size and initial FLOPs scales.
♻ ☆ Assessing Agentic Large Language Models in Multilingual National Bias ACL 2025
Large Language Models have garnered significant attention for their capabilities in multilingual natural language processing, while studies on risks associated with cross biases are limited to immediate context preferences. Cross-language disparities in reasoning-based recommendations remain largely unexplored, with a lack of even descriptive analysis. This study is the first to address this gap. We test LLM's applicability and capability in providing personalized advice across three key scenarios: university applications, travel, and relocation. We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages. We quantify bias in model-generated scores and assess the impact of demographic factors and reasoning strategies (e.g., Chain-of-Thought prompting) on bias patterns. Our findings reveal that local language bias is prevalent across different tasks, with GPT-4 and Sonnet reducing bias for English-speaking countries compared to GPT-3.5 but failing to achieve robust multilingual alignment, highlighting broader implications for multilingual AI agents and applications such as education. \footnote{Code available at: https://github.com/yiyunya/assess_agentic_national_bias
comment: Accepted to ACL 2025 Findings. 14 pages
♻ ☆ Human Bias in the Face of AI: Examining Human Judgment Against Text Labeled as AI Generated
As AI advances in text generation, human trust in AI generated content remains constrained by biases that go beyond concerns of accuracy. This study explores how bias shapes the perception of AI versus human generated content. Through three experiments involving text rephrasing, news article summarization, and persuasive writing, we investigated how human raters respond to labeled and unlabeled content. While the raters could not differentiate the two types of texts in the blind test, they overwhelmingly favored content labeled as "Human Generated," over those labeled "AI Generated," by a preference score of over 30%. We observed the same pattern even when the labels were deliberately swapped. This human bias against AI has broader societal and cognitive implications, as it undervalues AI performance. This study highlights the limitations of human judgment in interacting with AI and offers a foundation for improving human-AI collaboration, especially in creative fields.
comment: 5 main pages, 10 total pages
♻ ☆ Model Internal Sleuthing: Finding Lexical Identity and Inflectional Morphology in Modern Language Models
Large transformer-based language models dominate modern NLP, yet our understanding of how they encode linguistic information is rooted in studies of early models like BERT and GPT-2. To better understand today's language models, we investigate how 25 models - from classical architectures (BERT, DeBERTa, GPT-2) to modern large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3.1) - represent lexical identity and inflectional morphology across six typologically diverse languages. Using linear and nonlinear classifiers trained on hidden activations, we predict word lemmas and inflectional features layer by layer. We find that models concentrate lexical information linearly in early layers and increasingly nonlinearly in later layers, while keeping inflectional information uniformly accessible and linearly separable throughout. Additional experiments probe the nature of these encodings: attention and residual analyses examine where within layers information can be recovered, steering vector experiments test what information can be functionally manipulated, and intrinsic dimensionality analyses explore how the representational structure evolves across layers. Remarkably, these encoding patterns emerge across all models we test, despite differences in architecture, size, and training regime (pretrained and instruction-tuned variants). This suggests that, even with substantial advances in LLM technologies, transformer models organize linguistic information in similar ways, indicating that these properties are important for next token prediction and are learned early during pretraining. Our code is available at https://github.com/ml5885/model_internal_sleuthing
comment: INTERPLAY Workshop COLM 2025
♻ ☆ Learning Optimal Prompt Ensemble for Multi-source Visual Prompt Transfer
Prompt tuning has emerged as a lightweight strategy for adapting foundation models to downstream tasks, particularly for resource-constrained systems. As pre-trained prompts become valuable assets, combining multiple source prompts offers a promising approach to enhance generalization for new tasks by leveraging complementary knowledge. However, naive aggregation often overlooks different source prompts have different contribution potential to the target task. To address this, we propose HGPrompt, a dynamic framework that learns optimal ensemble weights. These weights are optimized by jointly maximizing an information-theoretic metric for transferability and minimizing gradient conflicts via a novel regularization strategy. Specifically, we propose a differentiable prompt transferability metric to captures the discriminability of prompt-induced features on the target task. Meanwhile, HGPrompt match the gradient variances with respect to different source prompts based on Hessian and Fisher Information, ensuring stable and coherent knowledge transfer while suppressing gradient conflicts among them. Extensive experiments on the large-scale VTAB benchmark demonstrate the state-of-the-art performance of HGPrompt, validating its effectiveness in learning an optimal ensemble for effective multi-source prompt transfer.
♻ ☆ Marco-Voice Technical Report
This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively.
comment: Technical Report. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively
♻ ☆ Emotion-o1: Adaptive Long Reasoning for Emotion Understanding in LLMs
Long chain-of-thought (CoT) reasoning has shown great promise in enhancing the emotion understanding performance of large language models (LLMs). However, current fixed-length CoT methods struggle to balance reasoning depth and efficiency. Simple tasks (e.g., sentiment classification) are over-reasoned, while complex tasks (e.g., sarcasm understanding) lack depth. To fill this gap, we present Emotion-o1, an adaptive CoT framework that dynamically adjusts reasoning length based on emotion-task complexity. Emotion-o1 is trained by distilling adaptive CoT patterns from a reasoning-oriented LLM, followed by supervised fine-tuning and reinforcement learning with a four-part reward targeting accuracy, brevity, structure, and redundancy. Experimental results on four emotion tasks highlight: (1) Emotion-o1 demonstrates significant improvements over its backbone, with F1 score increases of 10%(Sentiment), 5%(Emotion), 18%(Humor), and 27%(Sarcasm). (2) In sentiment and sarcasm tasks, our 8B model demonstrates superior performance against advanced LLMs, outperforming Grok-3 by 1.1% and Claude-3.7 by 2%. (3) The framework maintains accuracy while reducing reasoning length by 83% compared to OpenAI-o1, demonstrating effective precision-efficiency optimization. Emotion-o1 effectively balances reasoning depth and efficiency for emotion understanding in LLMs.
♻ ☆ Thinking with Nothinking Calibration: A New In-Context Learning Paradigm in Reasoning Large Language Models
Reasoning large language models (RLLMs) have recently demonstrated remarkable capabilities through structured and multi-step reasoning. While prior research has primarily focused on improving their training and inference strategies, their potential for in-context learning (ICL) remains largely underexplored. To fill this gap, we propose Thinking with Nothinking Calibration (JointThinking), a new ICL paradigm that leverages the structured difference between two reasoning modes, i.e., Thinking and Nothinking, to improve reasoning accuracy. Specifically, our method prompts the model to generate two answers in parallel: one in Thinking mode and the other in Nothinking mode. A second round of Thinking is triggered only when the two initial responses are inconsistent, using a single prompt that incorporates the original question and both candidate answers. Since such disagreement occurs infrequently (e.g., only 6\% in GSM8K), our method performs just one round of reasoning in most cases, resulting in minimal latency overhead. Extensive experiments across multiple reasoning benchmarks demonstrate that JointThinking significantly outperforms few-shot chain-of-thought (CoT) and majority voting with improved answer robustness. Moreover, It achieves comparable in-distribution performance to training-based SOTA method, while substantially outperforming on out-of-distribution tasks. We further conduct a systematic analysis of the calibration mechanism, showing that leveraging different reasoning modes consistently lowers the error rate and highlights the value of structural thinking diversity. Additionally, we observe that the performance gap between actual and ideal reasoning narrows as model size increases in the second round of thinking, indicating the strong scalability of our approach. Finally, we discuss current limitations and outline promising directions for future ICL research in RLLMs.
♻ ☆ Tool Unlearning for Tool-Augmented LLMs ICML 2025
Tool-augmented large language models (LLMs) are often trained on datasets of query-response pairs, which embed the ability to use tools or APIs directly into the parametric knowledge of LLMs. Tool-augmented LLMs need the ability to forget learned tools due to security vulnerabilities, privacy regulations, or tool deprecations. However, ``tool unlearning'' has not been investigated in unlearning literature. We introduce this novel task, which requires addressing distinct challenges compared to traditional unlearning: knowledge removal rather than forgetting individual samples, the high cost of optimizing LLMs, and the need for principled evaluation metrics. To bridge these gaps, we propose ToolDelete, the first approach for unlearning tools from tool-augmented LLMs. It implements three key properties to address the above challenges for effective tool unlearning and introduces a new membership inference attack (MIA) model for effective evaluation. Extensive experiments on multiple tool learning datasets and tool-augmented LLMs show that ToolDelete effectively unlearns randomly selected tools, while preserving the LLM's knowledge on non-deleted tools and maintaining performance on general tasks.
comment: ICML 2025 https://clu-uml.github.io/MU-Bench-Project-Page/
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
♻ ☆ EcoTransformer: Attention without Multiplication
The Transformer, with its scaled dot-product attention mechanism, has become a foundational architecture in modern AI. However, this mechanism is computationally intensive and incurs substantial energy costs. We propose a new Transformer architecture EcoTransformer, in which the output context vector is constructed as the convolution of the values using a Laplacian kernel, where the distances are measured by the L1 metric between the queries and keys. Compared to dot-product based attention, the new attention score calculation is free of matrix multiplication. It performs on par with, or even surpasses, scaled dot-product attention in NLP, bioinformatics, and vision tasks, while consuming significantly less energy. (This version (v2) supersedes v1 and reflects the intended release and licensing.)
comment: 8 pages, 1 figure
♻ ☆ CLaSP: Learning Concepts for Time-Series Signals from Natural Language Supervision
This paper presents CLaSP, a novel model for retrieving time-series signals using natural language queries that describe signal characteristics. The ability to search time-series signals based on descriptive queries is essential in domains such as industrial diagnostics, where data scientists often need to find signals with specific characteristics. However, existing methods rely on sketch-based inputs, predefined synonym dictionaries, or domain-specific manual designs, limiting their scalability and adaptability. CLaSP addresses these challenges by employing contrastive learning to map time-series signals to natural language descriptions. Unlike prior approaches, it eliminates the need for predefined synonym dictionaries and leverages the rich contextual knowledge of large language models (LLMs). Using the TRUCE and SUSHI datasets, which pair time-series signals with natural language descriptions, we demonstrate that CLaSP achieves high accuracy in retrieving a variety of time series patterns based on natural language queries.
♻ ☆ CoCoTen: Detecting Adversarial Inputs to Large Language Models through Latent Space Features of Contextual Co-occurrence Tensors
The widespread use of Large Language Models (LLMs) in many applications marks a significant advance in research and practice. However, their complexity and hard-to-understand nature make them vulnerable to attacks, especially jailbreaks designed to produce harmful responses. To counter these threats, developing strong detection methods is essential for the safe and reliable use of LLMs. This paper studies this detection problem using the Contextual Co-occurrence Matrix, a structure recognized for its efficacy in data-scarce environments. We propose a novel method leveraging the latent space characteristics of Contextual Co-occurrence Matrices and Tensors for the effective identification of adversarial and jailbreak prompts. Our evaluations show that this approach achieves a notable F1 score of 0.83 using only 0.5% of labeled prompts, which is a 96.6% improvement over baselines. This result highlights the strength of our learned patterns, especially when labeled data is scarce. Our method is also significantly faster, speedup ranging from 2.3 to 128.4 times compared to the baseline models. To support future research and reproducibility, we have made our implementation publicly available.
♻ ☆ Verbalized Representation Learning for Interpretable Few-Shot Generalization ICCV 2025
Humans recognize objects after observing only a few examples, a remarkable capability enabled by their inherent language understanding of the real-world environment. Developing verbalized and interpretable representation can significantly improve model generalization in low-data settings. In this work, we propose Verbalized Representation Learning (VRL), a novel approach for automatically extracting human-interpretable features for object recognition using few-shot data. Our method uniquely captures inter-class differences and intra-class commonalities in the form of natural language by employing a Vision-Language Model (VLM) to identify key discriminative features between different classes and shared characteristics within the same class. These verbalized features are then mapped to numeric vectors through the VLM. The resulting feature vectors can be further utilized to train and infer with downstream classifiers. Experimental results show that, at the same model scale, VRL achieves a 24% absolute improvement over prior state-of-the-art methods while using 95% less data and a smaller mode. Furthermore, compared to human-labeled attributes, the features learned by VRL exhibit a 20% absolute gain when used for downstream classification tasks. Code is available at: https://github.com/joeyy5588/VRL/tree/main.
comment: Accepted to ICCV 2025
♻ ☆ Scaling Laws For Mixed Quantization
Post-training quantization of Large Language Models (LLMs) has proven effective in reducing the memory and computational requirements for inference. In this study, we focus on a straightforward question: When aiming for a target accuracy or perplexity with low-precision quantization, how much high-precision computation needs to be preserved, and how fine-grained this quantization would need to be as we scale LLMs to larger sizes? We first introduce two critical metrics, named the quantization ratio ($Q_r$) and quantization block size ($Q_b$). The former measures the number of parameters quantized to low-precision arithmetic normalized by the total parameter count, whereas the latter defines the number of values within a block that share a scaling factor, akin to the block size concept introduced in the FP4 format in NVIDIA's Blackwell architecture. Through extensive and carefully controlled experiments across different models and quantization methods, we propose a unified scaling law on post-training quantization (PTQ) that can predict loss degeneration for varying $Q_r$ and $Q_b$. For $Q_r$, our scaling law implies that parameter scaling and ratio scaling have a multiplicative relationship. Consequently, larger models are more amenable to a higher quantization ratio $Q_r$, thus supporting an increase in the adoption of mixed quantization for inference. Regarding $Q_b$, our findings indicate that a small block size, similar to that used in Blackwell, is not essential for large models. Employing a small $Q_b$ can instead unnecessarily complicate the design of the hardware circuit.
♻ ☆ Optimizing LLM-Based Multi-Agent System with Textual Feedback: A Case Study on Software Development
We have seen remarkable progress in large language models (LLMs) empowered multi-agent systems solving complex tasks necessitating cooperation among experts with diverse skills. However, optimizing LLM-based multi-agent systems remains challenging. In this work, we perform an empirical case study on group optimization of role-based multi-agent systems utilizing natural language feedback for challenging software development tasks under various evaluation dimensions. We propose a two-step agent prompts optimization pipeline: identifying underperforming agents with their failure explanations utilizing textual feedback and then optimizing system prompts of identified agents utilizing failure explanations. We then study the impact of various optimization settings on system performance with two comparison groups: online against offline optimization and individual against group optimization. For group optimization, we study two prompting strategies: one-pass and multi-pass prompting optimizations. Overall, we demonstrate the effectiveness of our optimization method for role-based multi-agent systems tackling software development tasks evaluated on diverse evaluation dimensions, and we investigate the impact of diverse optimization settings on group behaviors of the multi-agent systems to provide practical insights for future development.
♻ ☆ RLTHF: Targeted Human Feedback for LLM Alignment ICML 2025
Fine-tuning large language models (LLMs) to align with user preferences is challenging due to the high cost of quality human annotations in Reinforcement Learning from Human Feedback (RLHF) and the generalizability limitations of AI Feedback. To address these challenges, we propose RLTHF, a human-AI hybrid framework that combines LLM-based initial alignment with selective human annotations to achieve full-human annotation alignment with minimal effort. RLTHF identifies hard-to-annotate samples mislabeled by LLMs using a reward model's reward distribution and iteratively enhances alignment by integrating strategic human corrections while leveraging LLM's correctly labeled samples. Evaluations on HH-RLHF and TL;DR datasets show that RLTHF reaches full-human annotation-level alignment with only 6-7% of the human annotation effort. Furthermore, models trained on RLTHF's curated datasets for downstream tasks outperform those trained on fully human-annotated datasets, underscoring the effectiveness of RLTHF.
comment: Presented at ICML 2025
♻ ☆ CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation ACL
Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given these examples, CRAFT uses large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology, medicine, and commonsense question-answering (QA), as well as summarization. Our experiments show that CRAFT-based models outperform or match general LLMs on QA tasks, while exceeding models trained on human-curated summarization data by 46 preference points. CRAFT outperforms other synthetic dataset generation methods such as Self- and Evol-Instruct, and remains robust even when the quality of the initial few-shots varies.
comment: Accepted at TACL; Pre-MIT Press publication version. Code and dataset available at: https://github.com/ziegler-ingo/CRAFT
♻ ☆ You Cannot Feed Two Birds with One Score: the Accuracy-Naturalness Tradeoff in Translation
The goal of translation, be it by human or by machine, is, given some text in a source language, to produce text in a target language that simultaneously 1) preserves the meaning of the source text and 2) achieves natural expression in the target language. However, researchers in the machine translation community usually assess translations using a single score intended to capture semantic accuracy and the naturalness of the output simultaneously. In this paper, we build on recent advances in information theory to mathematically prove and empirically demonstrate that such single-score summaries do not and cannot give the complete picture of a system's true performance. Concretely, we prove that a tradeoff exists between accuracy and naturalness and demonstrate it by evaluating the submissions to the WMT24 shared task. Our findings help explain well-known empirical phenomena, such as the observation that optimizing translation systems for a specific accuracy metric (like BLEU) initially improves the system's naturalness, while ``overfitting'' the system to the metric can significantly degrade its naturalness. Thus, we advocate for a change in how translations are evaluated: rather than comparing systems using a single number, they should be compared on an accuracy-naturalness plane.
comment: Accepted to COLM 2025. Camera-ready version
♻ ☆ Learning to Diagnose Privately: DP-Powered LLMs for Radiology Report Classification
Purpose: This study proposes a framework for fine-tuning large language models (LLMs) with differential privacy (DP) to perform multi-abnormality classification on radiology report text. By injecting calibrated noise during fine-tuning, the framework seeks to mitigate the privacy risks associated with sensitive patient data and protect against data leakage while maintaining classification performance. Materials and Methods: We used 50,232 radiology reports from the publicly available MIMIC-CXR chest radiography and CT-RATE computed tomography datasets, collected between 2011 and 2019. Fine-tuning of LLMs was conducted to classify 14 labels from MIMIC-CXR dataset, and 18 labels from CT-RATE dataset using Differentially Private Low-Rank Adaptation (DP-LoRA) in high and moderate privacy regimes (across a range of privacy budgets = {0.01, 0.1, 1.0, 10.0}). Model performance was evaluated using weighted F1 score across three model architectures: BERT-medium, BERT-small, and ALBERT-base. Statistical analyses compared model performance across different privacy levels to quantify the privacy-utility trade-off. Results: We observe a clear privacy-utility trade-off through our experiments on 2 different datasets and 3 different models. Under moderate privacy guarantees the DP fine-tuned models achieved comparable weighted F1 scores of 0.88 on MIMIC-CXR and 0.59 on CT-RATE, compared to non-private LoRA baselines of 0.90 and 0.78, respectively. Conclusion: Differentially private fine-tuning using LoRA enables effective and privacy-preserving multi-abnormality classification from radiology reports, addressing a key challenge in fine-tuning LLMs on sensitive medical data.
comment: 18 pages, 5 figures, 2 tables
♻ ☆ When in Doubt, Cascade: Towards Building Efficient and Capable Guardrails
Large language models (LLMs) have convincing performance in a variety of downstream tasks. However, these systems are prone to generating undesirable outputs such as harmful and biased text. In order to remedy such generations, the development of guardrail (or detector) models has gained traction. Motivated by findings from developing a detector for social bias, we adopt the notion of a use-mention distinction - which we identified as the primary source of under-performance in the preliminary versions of our social bias detector. Armed with this information, we describe a fully extensible and reproducible synthetic data generation pipeline which leverages taxonomy-driven instructions to create targeted and labeled data. Using this pipeline, we generate over 300K unique contrastive samples and provide extensive experiments to systematically evaluate performance on a suite of open source datasets. We show that our method achieves competitive performance with a fraction of the cost in compute and offers insight into iteratively developing efficient and capable guardrail models. Warning: This paper contains examples of text which are toxic, biased, and potentially harmful.
♻ ☆ CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics
In the field of crisis/disaster informatics, social media is increasingly being used for improving situational awareness to inform response and relief efforts. Efficient and accurate text classification tools have been a focal area of investigation in crisis informatics. However, current methods mostly rely on single-label text classification models, which fails to capture different insights embedded in dynamic and multifaceted disaster-related social media data. This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM) through instruction fine-tuning targeted for multi-label classification of disaster-related tweets. Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM, thereby embedding it with disaster-specific knowledge. This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid, significantly improving the utility of social media data for situational awareness in disasters. The results demonstrate that this approach enhances the categorization of critical information from social media posts, thereby facilitating a more effective deployment for situational awareness during emergencies. This research paves the way for more advanced, adaptable, and robust disaster management tools, leveraging the capabilities of LLMs to improve real-time situational awareness and response strategies in disaster scenarios.
comment: Relevant source code and data is available: https://github.com/KaiYin97/CrsisLLM
♻ ☆ DSBC : Data Science task Benchmarking with Context engineering
Recent advances in large language models (LLMs) have significantly impacted data science workflows, giving rise to specialized data science agents designed to automate analytical tasks. Despite rapid adoption, systematic benchmarks evaluating the efficacy and limitations of these agents remain scarce. In this paper, we introduce a comprehensive benchmark specifically crafted to reflect real-world user interactions with data science agents by observing usage of our commercial applications. We evaluate three LLMs: Claude-4.0-Sonnet, Gemini-2.5-Flash, and OpenAI-o4-Mini across three approaches: zero-shot with context engineering, multi-step with context engineering, and with SmolAgent. Our benchmark assesses performance across a diverse set of eight data science task categories, additionally exploring the sensitivity of models to common prompting issues, such as data leakage and slightly ambiguous instructions. We further investigate the influence of temperature parameters on overall and task-specific outcomes for each model and approach. Our findings reveal distinct performance disparities among the evaluated models and methodologies, highlighting critical factors that affect practical deployment. The benchmark dataset and evaluation framework introduced herein aim to provide a foundation for future research of more robust and effective data science agents.
comment: 32 pages
Information Retrieval 37
☆ Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
☆ Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
Text-to-SQL translation enables non-expert users to query relational databases using natural language, with applications in education and business intelligence. This study evaluates three lightweight transformer models - T5-Small, BART-Small, and GPT-2 - on the Spider dataset, focusing on low-resource settings. We developed a reusable, model-agnostic pipeline that tailors schema formatting to each model's architecture, training them across 1000 to 5000 iterations and evaluating on 1000 test samples using Logical Form Accuracy (LFAcc), BLEU, and Exact Match (EM) metrics. Fine-tuned T5-Small achieves the highest LFAcc (27.8%), outperforming BART-Small (23.98%) and GPT-2 (20.1%), highlighting encoder-decoder models' superiority in schema-aware SQL generation. Despite resource constraints limiting performance, our pipeline's modularity supports future enhancements, such as advanced schema linking or alternative base models. This work underscores the potential of compact transformers for accessible text-to-SQL solutions in resource-scarce environments.
☆ HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
Recommender systems are indispensable for helping users navigate the immense item catalogs of modern online platforms. Recently, generative recommendation has emerged as a promising paradigm, unifying the conventional retrieve-and-rank pipeline into an end-to-end model capable of dynamic generation. However, existing generative methods are fundamentally constrained by their unsupervised tokenization, which generates semantic IDs suffering from two critical flaws: (1) they are semantically flat and uninterpretable, lacking a coherent hierarchy, and (2) they are prone to representation entanglement (i.e., ``ID collisions''), which harms recommendation accuracy and diversity. To overcome these limitations, we propose HiD-VAE, a novel framework that learns hierarchically disentangled item representations through two core innovations. First, HiD-VAE pioneers a hierarchically-supervised quantization process that aligns discrete codes with multi-level item tags, yielding more uniform and disentangled IDs. Crucially, the trained codebooks can predict hierarchical tags, providing a traceable and interpretable semantic path for each recommendation. Second, to combat representation entanglement, HiD-VAE incorporates a novel uniqueness loss that directly penalizes latent space overlap. This mechanism not only resolves the critical ID collision problem but also promotes recommendation diversity by ensuring a more comprehensive utilization of the item representation space. These high-quality, disentangled IDs provide a powerful foundation for downstream generative models. Extensive experiments on three public benchmarks validate HiD-VAE's superior performance against state-of-the-art methods. The code is available at https://anonymous.4open.science/r/HiD-VAE-84B2.
☆ A Reproducible, Scalable Pipeline for Synthesizing Autoregressive Model Literature
The accelerating pace of research on autoregressive generative models has produced thousands of papers, making manual literature surveys and reproduction studies increasingly impractical. We present a fully open-source, reproducible pipeline that automatically retrieves candidate documents from public repositories, filters them for relevance, extracts metadata, hyper-parameters and reported results, clusters topics, produces retrieval-augmented summaries and generates containerised scripts for re-running selected experiments. Quantitative evaluation on 50 manually-annotated papers shows F1 scores above 0.85 for relevance classification, hyper-parameter extraction and citation identification. Experiments on corpora of up to 1000 papers demonstrate near-linear scalability with eight CPU workers. Three case studies -- AWD-LSTM on WikiText-2, Transformer-XL on WikiText-103 and an autoregressive music model on the Lakh MIDI dataset -- confirm that the extracted settings support faithful reproduction, achieving test perplexities within 1--3% of the original reports.
comment: 9 pages
☆ TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
☆ Do Recommender Systems Really Leverage Multimodal Content? A Comprehensive Analysis on Multimodal Representations for Recommendation CIKM 2025
Multimodal Recommender Systems aim to improve recommendation accuracy by integrating heterogeneous content, such as images and textual metadata. While effective, it remains unclear whether their gains stem from true multimodal understanding or increased model complexity. This work investigates the role of multimodal item embeddings, emphasizing the semantic informativeness of the representations. Initial experiments reveal that embeddings from standard extractors (e.g., ResNet50, Sentence-Bert) enhance performance, but rely on modality-specific encoders and ad hoc fusion strategies that lack control over cross-modal alignment. To overcome these limitations, we leverage Large Vision-Language Models (LVLMs) to generate multimodal-by-design embeddings via structured prompts. This approach yields semantically aligned representations without requiring any fusion. Experiments across multiple settings show notable performance improvements. Furthermore, LVLMs embeddings offer a distinctive advantage: they can be decoded into structured textual descriptions, enabling direct assessment of their multimodal comprehension. When such descriptions are incorporated as side content into recommender systems, they improve recommendation performance, empirically validating the semantic depth and alignment encoded within LVLMs outputs. Our study highlights the importance of semantically rich representations and positions LVLMs as a compelling foundation for building robust and meaningful multimodal representations in recommendation tasks.
comment: Accepted as Full Research Papers at CIKM 2025
☆ TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models
Recent advances in large language models (LLMs) have unlocked powerful reasoning and decision-making capabilities. However, their inherent dependence on static parametric memory fundamentally limits their adaptability, factual accuracy, and interpretability in knowledge-intensive scenarios. Knowledge graphs (KGs), as structured repositories of explicit relational knowledge, offer a promising approach for augmenting LLMs with external, interpretable memory. Nevertheless, most existing methods that combine LLMs with KGs treat reasoning and knowledge updating as separate processes, resulting in suboptimal utilization of new information and hindering real-time updates. In this work, we propose TRAIL: a novel, unified framework for Thinking, Reasoning, And Incremental Learning that couples joint inference and dynamic KG refinement with large language models. TRAIL enables LLM agents to iteratively explore, update, and refine knowledge graphs during the reasoning process, employing a confidence-driven mechanism for the generation, validation, and pruning of new facts. This plug-and-play architecture facilitates seamless integration with various LLMs, supporting continual adaptation without the need for retraining. Extensive experiments on multiple benchmarks demonstrate that TRAIL outperforms existing KG-augmented and retrieval-augmented LLM baselines by 3% to 13%. More importantly, these results represent a significant step toward developing adaptive, memory-augmented language models capable of continual learning and reliable, transparent reasoning.
☆ Algorithm Selection for Recommender Systems via Meta-Learning on Algorithm Characteristics
The Algorithm Selection Problem for recommender systems-choosing the best algorithm for a given user or context-remains a significant challenge. Traditional meta-learning approaches often treat algorithms as categorical choices, ignoring their intrinsic properties. Recent work has shown that explicitly characterizing algorithms with features can improve model performance in other domains. Building on this, we propose a per-user meta-learning approach for recommender system selection that leverages both user meta-features and automatically extracted algorithm features from source code. Our preliminary results, averaged over six diverse datasets, show that augmenting a meta-learner with algorithm features improves its average NDCG@10 performance by 8.83% from 0.135 (user features only) to 0.147. This enhanced model outperforms the Single Best Algorithm baseline (0.131) and successfully closes 10.5% of the performance gap to a theoretical oracle selector. These findings show that even static source code metrics provide a valuable predictive signal, presenting a promising direction for building more robust and intelligent recommender systems.
☆ Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
This study evaluates advanced natural language processing (NLP) techniques to enhance crash data quality by mining crash narratives, using secondary crash identification in Kentucky as a case study. Drawing from 16,656 manually reviewed narratives from 2015-2022, with 3,803 confirmed secondary crashes, we compare three model classes: zero-shot open-source large language models (LLMs) (LLaMA3:70B, DeepSeek-R1:70B, Qwen3:32B, Gemma3:27B); fine-tuned transformers (BERT, DistilBERT, RoBERTa, XLNet, Longformer); and traditional logistic regression as baseline. Models were calibrated on 2015-2021 data and tested on 1,771 narratives from 2022. Fine-tuned transformers achieved superior performance, with RoBERTa yielding the highest F1-score (0.90) and accuracy (95%). Zero-shot LLaMA3:70B reached a comparable F1 of 0.86 but required 139 minutes of inference; the logistic baseline lagged well behind (F1:0.66). LLMs excelled in recall for some variants (e.g., GEMMA3:27B at 0.94) but incurred high computational costs (up to 723 minutes for DeepSeek-R1:70B), while fine-tuned models processed the test set in seconds after brief training. Further analysis indicated that mid-sized LLMs (e.g., DeepSeek-R1:32B) can rival larger counterparts in performance while reducing runtime, suggesting opportunities for optimized deployments. Results highlight trade-offs between accuracy, efficiency, and data requirements, with fine-tuned transformer models balancing precision and recall effectively on Kentucky data. Practical deployment considerations emphasize privacy-preserving local deployment, ensemble approaches for improved accuracy, and incremental processing for scalability, providing a replicable scheme for enhancing crash-data quality with advanced NLP.
comment: 19 pages, 2 figures
☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges by 1) introducing a novel annotation schema specifically designed to support literature review generation and 2) conducting a comprehensive evaluation of a wide range of state-of-the-art large language models (LLMs) in classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments yield several novel insights that advance the state of the art in this challenging domain. First, the current generation of LLMs performs remarkably well on this task when fine-tuned on high-quality data, achieving performance levels above 96\% F1. Second, while large proprietary models like GPT-4o achieve the best results, some lightweight open-source alternatives also demonstrate excellent performance. Finally, enriching the training data with semi-synthetic examples generated by LLMs proves beneficial, enabling small encoders to achieve robust results and significantly enhancing the performance of several open decoder models.
☆ Comparative Analysis of Novel NIRMAL Optimizer Against Adam and SGD with Momentum
This study proposes NIRMAL (Novel Integrated Robust Multi-Adaptation Learning), a novel optimization algorithm that combines multiple strategies inspired by the movements of the chess piece. These strategies include gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We carefully evaluated NIRMAL against two widely used and successful optimizers, Adam and SGD with Momentum, on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. The custom convolutional neural network (CNN) architecture is applied on each dataset. The experimental results show that NIRMAL achieves competitive performance, particularly on the more challenging CIFAR-100 dataset, where it achieved a test accuracy of 45.32\%and a weighted F1-score of 0.4328. This performance surpasses Adam (41.79\% accuracy, 0.3964 F1-score) and closely matches SGD with Momentum (46.97\% accuracy, 0.4531 F1-score). Also, NIRMAL exhibits robust convergence and strong generalization capabilities, especially on complex datasets, as evidenced by stable training results in loss and accuracy curves. These findings underscore NIRMAL's significant ability as a versatile and effective optimizer for various deep learning tasks.
comment: 9 pages, 12 figures
☆ I$^3$-MRec: Invariant Learning with Information Bottleneck for Incomplete Modality Recommendation
Multimodal recommender systems (MRS) improve recommendation performance by integrating diverse semantic information from multiple modalities. However, the assumption of the availability of all modalities rarely holds in practice due to missing images, incomplete descriptions, or inconsistent user content. These challenges significantly degrade the robustness and generalization capabilities of current models. To address these challenges, we introduce a novel method called \textbf{I$^3$-MRec}, which uses \textbf{I}nvariant learning with \textbf{I}nformation bottleneck principle for \textbf{I}ncomplete \textbf{M}odality \textbf{Rec}ommendation. To achieve robust performance in missing modality scenarios, I$^3$-MRec enforces two pivotal properties: (i) cross-modal preference invariance, which ensures consistent user preference modeling across varying modality environments, and (ii) compact yet effective modality representation, which filters out task-irrelevant modality information while maximally preserving essential features relevant to recommendation. By treating each modality as a distinct semantic environment, I$^3$-MRec employs invariant risk minimization (IRM) to learn modality-specific item representations. In parallel, a missing-aware fusion module grounded in the Information Bottleneck (IB) principle extracts compact and effective item embeddings by suppressing modality noise and preserving core user preference signals. Extensive experiments conducted on three real-world datasets demonstrate that I$^3$-MRec consistently outperforms existing state-of-the-art MRS methods across various modality-missing scenarios, highlighting its effectiveness and robustness in practical applications. The code and processed datasets are released at https://github.com/HuilinChenJN/I3-MRec.
comment: ACM Multimedia 2025 Accepted
☆ Discrete-event Tensor Factorization: Learning a Smooth Embedding for Continuous Domains
Recommender systems learn from past user behavior to predict future user preferences. Intuitively, it has been established that the most recent interactions are more indicative of future preferences than older interactions. Many recommendation algorithms use this notion to either drop older interactions or to assign them a lower weight, so the model can focus on the more informative, recent information. However, very few approaches model the flow of time explicitly. This paper analyzes how time can be encoded in factorization-style recommendation models. By including absolute time as a feature, our models can learn varying user preferences and changing item perception over time. In addition to simple binning approaches, we also propose a novel, fully continuous time encoding mechanism. Through the use of a polynomial fit inside the loss function, our models completely avoid the need for discretization, and they are able to capture the time dimension in arbitrary resolution. We perform a comparative study on three real-world datasets that span multiple years, where long user histories are present, and items stay relevant for a longer time. Empirical results show that, by explicitly modeling time, our models are very effective at capturing temporal signals, such as varying item popularities over time. Despite this however, our experiments also indicate that a simple post-hoc popularity adjustment is often sufficient to achieve the best performance on the unseen test set. This teaches us that, for the recommendation task, predicting the future is more important than capturing past trends. As such, we argue that specialized mechanisms are needed for extrapolation to future data.
☆ A Hybrid AI Methodology for Generating Ontologies of Research Topics from Scientific Paper Corpora
Taxonomies and ontologies of research topics (e.g., MeSH, UMLS, CSO, NLM) play a central role in providing the primary framework through which intelligent systems can explore and interpret the literature. However, these resources have traditionally been manually curated, a process that is time-consuming, prone to obsolescence, and limited in granularity. This paper presents Sci-OG, a semi-auto\-mated methodology for generating research topic ontologies, employing a multi-step approach: 1) Topic Discovery, extracting potential topics from research papers; 2) Relationship Classification, determining semantic relationships between topic pairs; and 3) Ontology Construction, refining and organizing topics into a structured ontology. The relationship classification component, which constitutes the core of the system, integrates an encoder-based language model with features describing topic occurrence in the scientific literature. We evaluate this approach against a range of alternative solutions using a dataset of 21,649 manually annotated semantic triples. Our method achieves the highest F1 score (0.951), surpassing various competing approaches, including a fine-tuned SciBERT model and several LLM baselines, such as the fine-tuned GPT4-mini. Our work is corroborated by a use case which illustrates the practical application of our system to extend the CSO ontology in the area of cybersecurity. The presented solution is designed to improve the accessibility, organization, and analysis of scientific knowledge, thereby supporting advancements in AI-enabled literature management and research exploration.
☆ ViLLA-MMBench: A Unified Benchmark Suite for LLM-Augmented Multimodal Movie Recommendation
Recommending long-form video content demands joint modeling of visual, audio, and textual modalities, yet most benchmarks address only raw features or narrow fusion. We present ViLLA-MMBench, a reproducible, extensible benchmark for LLM-augmented multimodal movie recommendation. Built on MovieLens and MMTF-14K, it aligns dense item embeddings from three modalities: audio (block-level, i-vector), visual (CNN, AVF), and text. Missing or sparse metadata is automatically enriched using state-of-the-art LLMs (e.g., OpenAI Ada), generating high-quality synopses for thousands of movies. All text (raw or augmented) is embedded with configurable encoders (Ada, LLaMA-2, Sentence-T5), producing multiple ready-to-use sets. The pipeline supports interchangeable early-, mid-, and late-fusion (concatenation, PCA, CCA, rank-aggregation) and multiple backbones (MF, VAECF, VBPR, AMR, VMF) for ablation. Experiments are fully declarative via a single YAML file. Evaluation spans accuracy (Recall, nDCG) and beyond-accuracy metrics: cold-start rate, coverage, novelty, diversity, fairness. Results show LLM-based augmentation and strong text embeddings boost cold-start and coverage, especially when fused with audio-visual features. Systematic benchmarking reveals universal versus backbone- or metric-specific combinations. Open-source code, embeddings, and configs enable reproducible, fair multimodal RS research and advance principled generative AI integration in large-scale recommendation. Code: https://recsys-lab.github.io/ViLLA-MMBench
comment: 17 pages, 3 figures, 5 tables
☆ SSEmb: A Joint Structural and Semantic Embedding Framework for Mathematical Formula Retrieval
Formula retrieval is an important topic in Mathematical Information Retrieval. We propose SSEmb, a novel embedding framework capable of capturing both structural and semantic features of mathematical formulas. Structurally, we employ Graph Contrastive Learning to encode formulas represented as Operator Graphs. To enhance structural diversity while preserving mathematical validity of these formula graphs, we introduce a novel graph data augmentation approach through a substitution strategy. Semantically, we utilize Sentence-BERT to encode the surrounding text of formulas. Finally, for each query and its candidates, structural and semantic similarities are calculated separately and then fused through a weighted scheme. In the ARQMath-3 formula retrieval task, SSEmb outperforms existing embedding-based methods by over 5 percentage points on P'@10 and nDCG'@10. Furthermore, SSEmb enhances the performance of all runs of other methods and achieves state-of-the-art results when combined with Approach0.
☆ Bridging Search and Recommendation through Latent Cross Reasoning
Search and recommendation (S&R) are fundamental components of modern online platforms, yet effectively leveraging search behaviors to improve recommendation remains a challenging problem. User search histories often contain noisy or irrelevant signals that can even degrade recommendation performance, while existing approaches typically encode S&R histories either jointly or separately without explicitly identifying which search behaviors are truly useful. Inspired by the human decision-making process, where one first identifies recommendation intent and then reasons about relevant evidence, we design a latent cross reasoning framework that first encodes user S&R histories to capture global interests and then iteratively reasons over search behaviors to extract signals beneficial for recommendation. Contrastive learning is employed to align latent reasoning states with target items, and reinforcement learning is further introduced to directly optimize ranking performance. Extensive experiments on public benchmarks demonstrate consistent improvements over strong baselines, validating the importance of reasoning in enhancing search-aware recommendation.
☆ Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced Recommendation CIKM 2025
In modern online platforms, search and recommendation (S&R) often coexist, offering opportunities for performance improvement through search-enhanced approaches. Existing studies show that incorporating search signals boosts recommendation performance. However, the effectiveness of these methods relies heavily on rich search interactions. They primarily benefit a small subset of users with abundant search behavior, while offering limited improvements for the majority of users who exhibit only sparse search activity. To address the problem of sparse search data in search-enhanced recommendation, we face two key challenges: (1) how to learn useful search features for users with sparse search interactions, and (2) how to design effective training objectives under sparse conditions. Our idea is to leverage the features of users with rich search interactions to enhance those of users with sparse search interactions. Based on this idea, we propose GSERec, a method that utilizes message passing on the User-Code Graphs to alleviate data sparsity in Search-Enhanced Recommendation. Specifically, we utilize Large Language Models (LLMs) with vector quantization to generate discrete codes, which connect similar users and thereby construct the graph. Through message passing on this graph, embeddings of users with rich search data are propagated to enhance the embeddings of users with sparse interactions. To further ensure that the message passing captures meaningful information from truly similar users, we introduce a contrastive loss to better model user similarities. The enhanced user representations are then integrated into downstream search-enhanced recommendation models. Experiments on three real-world datasets show that GSERec consistently outperforms baselines, especially for users with sparse search behaviors.
comment: Accepted by CIKM 2025
☆ Enhancing Serendipity Recommendation System by Constructing Dynamic User Knowledge Graphs with Large Language Models
The feedback loop in industrial recommendation systems reinforces homogeneous content, creates filter bubble effects, and diminishes user satisfaction. Recently, large language models(LLMs) have demonstrated potential in serendipity recommendation, thanks to their extensive world knowledge and superior reasoning capabilities. However, these models still face challenges in ensuring the rationality of the reasoning process, the usefulness of the reasoning results, and meeting the latency requirements of industrial recommendation systems (RSs). To address these challenges, we propose a method that leverages llm to dynamically construct user knowledge graphs, thereby enhancing the serendipity of recommendation systems. This method comprises a two stage framework:(1) two-hop interest reasoning, where user static profiles and historical behaviors are utilized to dynamically construct user knowledge graphs via llm. Two-hop reasoning, which can enhance the quality and accuracy of LLM reasoning results, is then performed on the constructed graphs to identify users' potential interests; and(2) Near-line adaptation, a cost-effective approach to deploying the aforementioned models in industrial recommendation systems. We propose a u2i (user-to-item) retrieval model that also incorporates i2i (item-to-item) retrieval capabilities, the retrieved items not only exhibit strong relevance to users' newly emerged interests but also retain the high conversion rate of traditional u2i retrieval. Our online experiments on the Dewu app, which has tens of millions of users, indicate that the method increased the exposure novelty rate by 4.62%, the click novelty rate by 4.85%, the average view duration per person by 0.15%, unique visitor click through rate by 0.07%, and unique visitor interaction penetration by 0.30%, enhancing user experience.
comment: 8 pages
☆ Dual Prompt Learning for Adapting Vision-Language Models to Downstream Image-Text Retrieval
Recently, prompt learning has demonstrated remarkable success in adapting pre-trained Vision-Language Models (VLMs) to various downstream tasks such as image classification. However, its application to the downstream Image-Text Retrieval (ITR) task is more challenging. We find that the challenge lies in discriminating both fine-grained attributes and similar subcategories of the downstream data. To address this challenge, we propose Dual prompt Learning with Joint Category-Attribute Reweighting (DCAR), a novel dual-prompt learning framework to achieve precise image-text matching. The framework dynamically adjusts prompt vectors from both semantic and visual dimensions to improve the performance of CLIP on the downstream ITR task. Based on the prompt paradigm, DCAR jointly optimizes attribute and class features to enhance fine-grained representation learning. Specifically, (1) at the attribute level, it dynamically updates the weights of attribute descriptions based on text-image mutual information correlation; (2) at the category level, it introduces negative samples from multiple perspectives with category-matching weighting to learn subcategory distinctions. To validate our method, we construct the Fine-class Described Retrieval Dataset (FDRD), which serves as a challenging benchmark for ITR in downstream data domains. It covers over 1,500 downstream fine categories and 230,000 image-caption pairs with detailed attribute annotations. Extensive experiments on FDRD demonstrate that DCAR achieves state-of-the-art performance over existing baselines.
comment: 10 pages, 7figures
☆ Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.
☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
☆ Federated Continual Recommendation CIKM 2025
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025
☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
LLM4ES: Learning User Embeddings from Event Sequences via Large Language Models
This paper presents LLM4ES, a novel framework that exploits large pre-trained language models (LLMs) to derive user embeddings from event sequences. Event sequences are transformed into a textual representation, which is subsequently used to fine-tune an LLM through next-token prediction to generate high-quality embeddings. We introduce a text enrichment technique that enhances LLM adaptation to event sequence data, improving representation quality for low-variability domains. Experimental results demonstrate that LLM4ES achieves state-of-the-art performance in user classification tasks in financial and other domains, outperforming existing embedding methods. The resulting user embeddings can be incorporated into a wide range of applications, from user segmentation in finance to patient outcome prediction in healthcare.
♻ ☆ Harnessing Large Language Models for Group POI Recommendations
The rapid proliferation of Location-Based Social Networks (LBSNs) has underscored the importance of Point-of-Interest (POI) recommendation systems in enhancing user experiences. While individual POI recommendation methods leverage users' check-in histories to provide personalized suggestions, they struggle to address scenarios requiring group decision-making. Group POI recommendation systems aim to satisfy the collective preferences of multiple users, but existing approaches face two major challenges: diverse group preferences and extreme data sparsity in group check-in data. To overcome these challenges, we propose LLMGPR, a novel framework that leverages large language models (LLMs) for group POI recommendations. LLMGPR introduces semantic-enhanced POI tokens and incorporates rich contextual information to model the diverse and complex dynamics of group decision-making. To further enhance its capabilities, we developed a sequencing adapter using Quantized Low-Rank Adaptation (QLoRA), which aligns LLMs with group POI recommendation tasks. To address the issue of sparse group check-in data, LLMGPR employs an aggregation adapter that integrates individual representations into meaningful group representations. Additionally, a self-supervised learning (SSL) task is designed to predict the purposes of check-in sequences (e.g., business trips and family vacations), thereby enriching group representations with deeper semantic insights. Extensive experiments demonstrate the effectiveness of LLMGPR, showcasing its ability to significantly enhance the accuracy and robustness of group POI recommendations.
♻ ☆ Paragon: Parameter Generation for Controllable Multi-Task Recommendation
Commercial recommender systems face the challenge that task requirements from platforms or users often change dynamically (e.g., varying preferences for accuracy or diversity). Ideally, the model should be re-trained after resetting a new objective function, adapting to these changes in task requirements. However, in practice, the high computational costs associated with retraining make this process impractical for models already deployed to online environments. This raises a new challenging problem: how to efficiently adapt the learned model to different task requirements by controlling the model parameters after deployment, without the need for retraining. To address this issue, we propose a novel controllable learning approach via \textbf{para}meter \textbf{g}eneration for c\textbf{on}trollable multi-task recommendation (\textbf{Paragon}), which allows the customization and adaptation of recommendation model parameters to new task requirements without retraining. Specifically, we first obtain the optimized model parameters through adapter tunning based on the feasible task requirements. Then, we utilize the generative model as a parameter generator, employing classifier-free guidance in conditional training to learn the distribution of optimized model parameters under various task requirements. Finally, the parameter generator is applied to effectively generate model parameters in a test-time adaptation manner given task requirements. Moreover, Paragon seamlessly integrates with various existing recommendation models to enhance their controllability. Extensive experiments on two public datasets and one commercial dataset demonstrate that Paragon can efficiently generate model parameters instead of retraining, reducing computational time by at least 94.6\%. The code is released at \href{https://github.com/bubble65/Paragon}{https://github.com/bubble65/Paragon}.
♻ ☆ A Survey of Controllable Learning: Methods and Applications in Information Retrieval
Controllability has become a crucial aspect of trustworthy machine learning, enabling learners to meet predefined targets and adapt dynamically at test time without requiring retraining as the targets shift. We provide a formal definition of controllable learning (CL), and discuss its applications in information retrieval (IR) where information needs are often complex and dynamic. The survey categorizes CL according to what is controllable (e.g., multiple objectives, user portrait, scenario adaptation), who controls (users or platforms), how control is implemented (e.g., rule-based method, Pareto optimization, hypernetwork and others), and where to implement control (e.g., pre-processing, in-processing, post-processing methods). Then, we identify challenges faced by CL across training, evaluation, task setting, and deployment in online environments. Additionally, we outline promising directions for CL in theoretical analysis, efficient computation, empowering large language models, application scenarios and evaluation frameworks.
♻ ☆ GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation
Learning path recommendation seeks to provide learners with a structured sequence of learning items (\eg, knowledge concepts or exercises) to optimize their learning efficiency. Despite significant efforts in this area, most existing methods primarily rely on prerequisite relationships, which present two major limitations: 1) Requiring prerequisite relationships between knowledge concepts, which are difficult to obtain due to the cost of expert annotation, hindering the application of current learning path recommendation methods. 2) Relying on a single, sequentially dependent knowledge structure based on prerequisite relationships implies that difficulties at any stage can cause learning blockages, which in turn disrupt subsequent learning processes. To address these challenges, we propose a novel approach, GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation (KnowLP), which enhances learning path recommendations by incorporating both prerequisite and similarity relationships between knowledge concepts. Specifically, we introduce a knowledge concept structure graph generation module EDU-GraphRAG that adaptively constructs knowledge concept structure graphs for different educational datasets, significantly improving the generalizability of learning path recommendation methods. We then propose a Discrimination Learning-driven Reinforcement Learning (DLRL) module, which mitigates the issue of blocked learning paths, further enhancing the efficacy of learning path recommendations. Finally, we conduct extensive experiments on three benchmark datasets, demonstrating that our method not only achieves state-of-the-art performance but also provides interpretable reasoning for the recommended learning paths.
♻ ☆ A Comparative Study of Specialized LLMs as Dense Retrievers
While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.
comment: Accepted by CCIR25 and published by Springer LNCS or LNAI
♻ ☆ Modality and Task Adaptation for Enhanced Zero-shot Composed Image Retrieval
As a challenging vision-language task, Zero-Shot Composed Image Retrieval (ZS-CIR) is designed to retrieve target images using bi-modal (image+text) queries. Typical ZS-CIR methods employ an inversion network to generate pseudo-word tokens that effectively represent the input semantics. However, the inversion-based methods suffer from two inherent issues: First, the task discrepancy exists because inversion training and CIR inference involve different objectives. Second, the modality discrepancy arises from the input feature distribution mismatch between training and inference. To this end, we propose a lightweight post-hoc framework, consisting of two components: (1) A new text-anchored triplet construction pipeline leverages a large language model (LLM) to transform a standard image-text dataset into a triplet dataset, where a textual description serves as the target of each triplet. (2) The MoTa-Adapter, a novel parameter-efficient fine-tuning method, adapts the dual encoder to the CIR task using our constructed triplet data. Specifically, on the text side, multiple sets of learnable task prompts are integrated via a Mixture-of-Experts (MoE) layer to capture task-specific priors and handle different types of modifications. On the image side, MoTa-Adapter modulates the inversion network's input to better match the downstream text encoder. In addition, an entropy-based optimization strategy is proposed to assign greater weight to challenging samples, thus ensuring efficient adaptation. Experiments show that, with the incorporation of our proposed components, inversion-based methods achieve significant improvements, reaching state-of-the-art performance across four widely-used benchmarks. All data and code will be made publicly available.
♻ ☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OzCHI 2025. 23 pages, 1 figure, 5 tables
♻ ☆ On-Device Recommender Systems: A Comprehensive Survey
Recommender systems have been widely deployed in various real-world applications to help users identify content of interest from massive amounts of information. Traditional recommender systems work by collecting user-item interaction data in a cloud-based data center and training a centralized model to perform the recommendation service. However, such cloud-based recommender systems (CloudRSs) inevitably suffer from excessive resource consumption, response latency, as well as privacy and security risks concerning both data and models. Recently, driven by the advances in storage, communication, and computation capabilities of edge devices, there has been a shift of focus from CloudRSs to on-device recommender systems (DeviceRSs), which leverage the capabilities of edge devices to minimize centralized data storage requirements, reduce the response latency caused by communication overheads, and enhance user privacy and security by localizing data processing and model training. Despite the rapid rise of DeviceRSs, there is a clear absence of timely literature reviews that systematically introduce, categorize and contrast these methods. To bridge this gap, we aim to provide a comprehensive survey of DeviceRSs, covering three main aspects: (1) the deployment and inference of DeviceRSs (2) the training and update of DeviceRSs (3) the security and privacy of DeviceRSs. Furthermore, we provide a fine-grained and systematic taxonomy of the methods involved in each aspect, followed by a discussion regarding challenges and future research directions. This is the first comprehensive survey on DeviceRSs that covers a spectrum of tasks to fit various needs. We believe this survey will help readers effectively grasp the current research status in this field, equip them with relevant technical foundations, and stimulate new research ideas for developing DeviceRSs.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
♻ ☆ Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
♻ ☆ PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
Generative retrieval methods utilize generative sequential modeling techniques, such as transformers, to generate candidate items for recommender systems. These methods have demonstrated promising results in academic benchmarks, surpassing traditional retrieval models like two-tower architectures. However, current generative retrieval methods lack the scalability required for industrial recommender systems, and they are insufficiently flexible to satisfy the multiple metric requirements of modern systems. This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest. PinRec utilizes outcome-conditioned generation, enabling modelers to specify how to balance various outcome metrics, such as the number of saves and clicks, to effectively align with business goals and user exploration. Additionally, PinRec incorporates multi-token generation to enhance output diversity while optimizing generation. Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users using generative models. This paper marks a significant milestone in generative retrieval, as it presents, to our knowledge, the first rigorous study on implementing generative retrieval at the scale of Pinterest.
♻ ☆ Realizing Scaling Laws in Recommender Systems: A Foundation-Expert Paradigm for Hyperscale Model Deployment
While scaling laws promise significant performance gains for recommender systems, efficiently deploying hyperscale models remains a major unsolved challenge. In contrast to fields where FMs are already widely adopted such as natural language processing and computer vision, progress in recommender systems is hindered by unique challenges including the need to learn from online streaming data under shifting data distributions, the need to adapt to different recommendation surfaces with a wide diversity in their downstream tasks and their input distributions, and stringent latency and computational constraints. To bridge this gap, we propose to leverage the Foundation-Expert Paradigm: a framework designed for the development and deployment of hyperscale recommendation FMs. In our approach, a central FM is trained on lifelong, cross-surface, multi-modal user data to learn generalizable knowledge. This knowledge is then efficiently transferred to various lightweight, surface-specific "expert" models via target-aware embeddings, allowing them to adapt to local data distributions and optimization goals with minimal overhead. To meet our training, inference and development needs, we built HyperCast, a production-grade infrastructure system that re-engineers training, serving, logging and iteration to power this decoupled paradigm. Our approach is now deployed at Meta serving tens of billions of user requests daily, demonstrating online metric improvements over our previous one-stage production system while improving developer velocity and maintaining infrastructure efficiency. To the best of our knowledge, this work represents the first successful deployment of a Foundation-Expert paradigm at this scale, offering a proven, compute-efficient, and developer-friendly blueprint to realize the promise of scaling laws in recommender systems.
Computation and Language 141
☆ CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.
comment: Technical Report; 31 Pages
☆ More Than a Score: Probing the Impact of Prompt Specificity on LLM Code Generation
State-of-the-art Large Language Models (LLMs) achieve high pass@1 on general benchmarks like HumanEval but underperform on specialized suites such as ParEval. Is this due to LLMs missing domain knowledge or insufficient prompt detail is given? To answer this, we introduce PartialOrderEval, which augments any code generation benchmark with a partial order of prompts from minimal to maximally detailed. Applying it to HumanEval and both serial and OpenMP subsets of ParEval, we measure how pass@1 scales with prompt specificity. Our experiments with Llama-3.x and Qwen2.5-Coder demonstrate varying degrees of prompt sensitivity across different tasks, and a qualitative analysis highlights explicit I/O specifications, edge-case handling, and stepwise breakdowns as the key drivers of prompt detail improvement.
☆ FairLangProc: A Python package for fairness in NLP
The rise in usage of Large Language Models to near ubiquitousness in recent years has risen societal concern about their applications in decision-making contexts, such as organizational justice or healthcare. This, in turn, poses questions about the fairness of these models in critical settings, which leads to the developement of different procedures to address bias in Natural Language Processing. Although many datasets, metrics and algorithms have been proposed to measure and mitigate harmful prejudice in Natural Language Processing, their implementation is diverse and far from centralized. As a response, this paper presents FairLangProc, a comprehensive Python package providing a common implementation of some of the more recent advances in fairness in Natural Language Processing providing an interface compatible with the famous Hugging Face transformers library, aiming to encourage the widespread use and democratization of bias mitigation techniques. The implementation can be found on https://github.com/arturo-perez-peralta/FairLangProc.
comment: 40 pages, 4 figures, 3 tables
☆ CTR-Sink: Attention Sink for Language Models in Click-Through Rate Prediction
Click-Through Rate (CTR) prediction, a core task in recommendation systems, estimates user click likelihood using historical behavioral data. Modeling user behavior sequences as text to leverage Language Models (LMs) for this task has gained traction, owing to LMs' strong semantic understanding and contextual modeling capabilities. However, a critical structural gap exists: user behavior sequences consist of discrete actions connected by semantically empty separators, differing fundamentally from the coherent natural language in LM pre-training. This mismatch causes semantic fragmentation, where LM attention scatters across irrelevant tokens instead of focusing on meaningful behavior boundaries and inter-behavior relationships, degrading prediction performance. To address this, we propose $\textit{CTR-Sink}$, a novel framework introducing behavior-level attention sinks tailored for recommendation scenarios. Inspired by attention sink theory, it constructs attention focus sinks and dynamically regulates attention aggregation via external information. Specifically, we insert sink tokens between consecutive behaviors, incorporating recommendation-specific signals such as temporal distance to serve as stable attention sinks. To enhance generality, we design a two-stage training strategy that explicitly guides LM attention toward sink tokens and a attention sink mechanism that amplifies inter-sink dependencies to better capture behavioral correlations. Experiments on one industrial dataset and two open-source datasets (MovieLens, Kuairec), alongside visualization results, validate the method's effectiveness across scenarios.
☆ Forest vs Tree: The $(N, K)$ Trade-off in Reproducible ML Evaluation
Reproducibility is a cornerstone of scientific validation and of the authority it confers on its results. Reproducibility in machine learning evaluations leads to greater trust, confidence, and value. However, the ground truth responses used in machine learning often necessarily come from humans, among whom disagreement is prevalent, and surprisingly little research has studied the impact of effectively ignoring disagreement in these responses, as is typically the case. One reason for the lack of research is that budgets for collecting human-annotated evaluation data are limited, and obtaining more samples from multiple annotators for each example greatly increases the per-item annotation costs. We investigate the trade-off between the number of items ($N$) and the number of responses per item ($K$) needed for reliable machine learning evaluation. We analyze a diverse collection of categorical datasets for which multiple annotations per item exist, and simulated distributions fit to these datasets, to determine the optimal $(N, K)$ configuration, given a fixed budget ($N \times K$), for collecting evaluation data and reliably comparing the performance of machine learning models. Our findings show, first, that accounting for human disagreement may come with $N \times K$ at no more than 1000 (and often much lower) for every dataset tested on at least one metric. Moreover, this minimal $N \times K$ almost always occurred for $K > 10$. Furthermore, the nature of the tradeoff between $K$ and $N$ -- or if one even existed -- depends on the evaluation metric, with metrics that are more sensitive to the full distribution of responses performing better at higher levels of $K$. Our methods can be used to help ML practitioners get more effective test data by finding the optimal metrics and number of items and annotations per item to collect to get the most reliability for their budget.
☆ Can Large Vision-Language Models Understand Multimodal Sarcasm? CIKM 2025
Sarcasm is a complex linguistic phenomenon that involves a disparity between literal and intended meanings, making it challenging for sentiment analysis and other emotion-sensitive tasks. While traditional sarcasm detection methods primarily focus on text, recent approaches have incorporated multimodal information. However, the application of Large Visual Language Models (LVLMs) in Multimodal Sarcasm Analysis (MSA) remains underexplored. In this paper, we evaluate LVLMs in MSA tasks, specifically focusing on Multimodal Sarcasm Detection and Multimodal Sarcasm Explanation. Through comprehensive experiments, we identify key limitations, such as insufficient visual understanding and a lack of conceptual knowledge. To address these issues, we propose a training-free framework that integrates in-depth object extraction and external conceptual knowledge to improve the model's ability to interpret and explain sarcasm in multimodal contexts. The experimental results on multiple models show the effectiveness of our proposed framework. The code is available at https://github.com/cp-cp/LVLM-MSA.
comment: Accepted by CIKM 2025
☆ Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
comment: In submission. Project website: https://double-bench.github.io/
☆ OSINT or BULLSHINT? Exploring Open-Source Intelligence tweets about the Russo-Ukrainian War
This paper examines the role of Open Source Intelligence (OSINT) on Twitter regarding the Russo-Ukrainian war, distinguishing between genuine OSINT and deceptive misinformation efforts, termed "BULLSHINT." Utilizing a dataset spanning from January 2022 to July 2023, we analyze nearly 2 million tweets from approximately 1,040 users involved in discussing real-time military engagements, strategic analyses, and misinformation related to the conflict. Using sentiment analysis, partisanship detection, misinformation identification, and Named Entity Recognition (NER), we uncover communicative patterns and dissemination strategies within the OSINT community. Significant findings reveal a predominant negative sentiment influenced by war events, a nuanced distribution of pro-Ukrainian and pro-Russian partisanship, and the potential strategic manipulation of information. Additionally, we apply community detection techniques, which are able to identify distinct clusters partisanship, topics, and misinformation, highlighting the complex dynamics of information spread on social media. This research contributes to the understanding of digital warfare and misinformation dynamics, offering insights into the operationalization of OSINT in geopolitical conflicts.
☆ Tackling Distribution Shift in LLM via KILO: Knowledge-Instructed Learning for Continual Adaptation
Large Language Models (LLMs) often suffer from performance degradation when faced with domain shifts, primarily due to catastrophic forgetting. In this work, we propose KILO (Knowledge-Instructed Learning for Continual Adaptation), a novel continual learning framework that integrates dynamic knowledge graphs with instruction tuning. By leveraging retrieved domain-specific knowledge as guidance during training, KILO enhances both adaptability to new domains and retention of previously acquired knowledge. We pretrain our model on WikiText-103 and evaluate sequential adaptation across four diverse target domains: BioASQ, SciQ, TweetEval, and MIND. Our experiments demonstrate that KILO consistently outperforms strong baselines, including continual fine-tuning, ERNIE 2.0, and CPT, in terms of backward transfer, forward transfer, F1 score, retention rate, and training efficiency. These results highlight the effectiveness of combining structured knowledge retrieval and instruction prompting to overcome domain shift challenges in continual learning scenarios.
☆ Beyond Meme Templates: Limitations of Visual Similarity Measures in Meme Matching
Internet memes, now a staple of digital communication, play a pivotal role in how users engage within online communities and allow researchers to gain insight into contemporary digital culture. These engaging user-generated content are characterised by their reuse of visual elements also found in other memes. Matching instances of memes via these shared visual elements, called Meme Matching, is the basis of a wealth of meme analysis approaches. However, most existing methods assume that every meme consists of a shared visual background, called a Template, with some overlaid text, thereby limiting meme matching to comparing the background image alone. Current approaches exclude the many memes that are not template-based and limit the effectiveness of automated meme analysis and would not be effective at linking memes to contemporary web-based meme dictionaries. In this work, we introduce a broader formulation of meme matching that extends beyond template matching. We show that conventional similarity measures, including a novel segment-wise computation of the similarity measures, excel at matching template-based memes but fall short when applied to non-template-based meme formats. However, the segment-wise approach was found to consistently outperform the whole-image measures on matching non-template-based memes. Finally, we explore a prompting-based approach using a pretrained Multimodal Large Language Model for meme matching. Our results highlight that accurately matching memes via shared visual elements, not just background templates, remains an open challenge that requires more sophisticated matching techniques.
comment: Accepted for publication at IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA) 2025
☆ PyLate: Flexible Training and Retrieval for Late Interaction Models
Neural ranking has become a cornerstone of modern information retrieval. While single vector search remains the dominant paradigm, it suffers from the shortcoming of compressing all the information into a single vector. This compression leads to notable performance degradation in out-of-domain, long-context, and reasoning-intensive retrieval tasks. Multi-vector approaches pioneered by ColBERT aim to address these limitations by preserving individual token embeddings and computing similarity via the MaxSim operator. This architecture has demonstrated superior empirical advantages, including enhanced out-of-domain generalization, long-context handling, and performance in complex retrieval scenarios. Despite these compelling empirical results and clear theoretical advantages, the practical adoption and public availability of late interaction models remain low compared to their single-vector counterparts, primarily due to a lack of accessible and modular tools for training and experimenting with such models. To bridge this gap, we introduce PyLate, a streamlined library built on top of Sentence Transformers to support multi-vector architectures natively, inheriting its efficient training, advanced logging, and automated model card generation while requiring minimal code changes to code templates users are already familiar with. By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models, thereby unlocking their full potential in modern IR systems. Finally, PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT, demonstrating its practical utility for both research and production environments.
comment: 5 pages
☆ MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation ICDE 2025
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.
comment: Accepted by ICDE 2025 Research Paper
☆ Beyond the Surface: Enhancing LLM-as-a-Judge Alignment with Human via Internal Representations
The growing scale of evaluation tasks has led to the widespread adoption of automated evaluation using large language models, a paradigm known as "LLMas-a-judge." However, improving its alignment with human preferences without complex prompts or fine-tuning remains challenging. In this work, motivated by preliminary findings that middle-to-upper layers encode semantically and taskrelevant representations that are often more aligned with human judgments than the final layer, we propose LAGER, a lightweight and efficient framework for enhancing LLM-as-a-Judge alignment with human scoring, via internal representations. LAGER produces fine-grained judgment scores by aggregating cross-layer scoretoken logits and computing the expected score from a softmax-based distribution, with the LLM backbone kept frozen. LAGER fully leverages the complementary information across different layers, overcoming the limitations of relying solely on the final layer. We evaluate our method on the standard alignment benchmarks Flask, HelpSteer, and BIGGen using Spearman correlation, and find that LAGER achieves improvements of up to 7.5% over the best baseline across these benchmarks. Without reasoning steps, LAGER matches or outperforms reasoning-based methods. Experiments on downstream applications, such as data selection and emotional understanding, further show the effectiveness of our method.
☆ EmbedGrad: Gradient-Based Prompt Optimization in Embedding Space for Large Language Models
Effectively adapting powerful pretrained foundation models to diverse tasks remains a key challenge in AI deployment. Current approaches primarily follow two paradigms:discrete optimization of text prompts through prompt engineering, or continuous adaptation via additional trainable parameters. Both exhibit limitations-discrete methods lack refinement precision while parameter-based techniques increase complexity and reduce interpretability. To address these constraints, we propose EmbedGrad, a novel framework that optimizes text prompt embeddings through gradient-based refinement. Our approach uniquely decouples training from deployment:during optimization,labeled examples guide precise embedding adjustments while preserving semantic meaning; during inference, only optimized embeddings integrate with user queries. This enables fine-grained calibration impossible in text space, such as enhancing the reasoning capability of prompts like please reason step by step. Comprehensive evaluations across mathematical reasoning, sentiment analysis, and causal judgment tasks demonstrate EmbedGrad's effectiveness:optimizing this reasoning prompt for Qwen2.5-Math-1.5B increased accuracy from 14.74\% to 58.96\% on mathematical problems. Consistent improvements were observed across model scales (0.5B-14B) and all tasks, with particularly significant gains for smaller models on complex problems like causal judgment. By bridging prompt engineering and parameter efficiency without architectural changes, our work establishes embedding refinement as a powerful new paradigm for task adaptation.
☆ Marito: Structuring and Building Open Multilingual Terminologies for South African NLP
The critical lack of structured terminological data for South Africa's official languages hampers progress in multilingual NLP, despite the existence of numerous government and academic terminology lists. These valuable assets remain fragmented and locked in non-machine-readable formats, rendering them unusable for computational research and development. \emph{Marito} addresses this challenge by systematically aggregating, cleaning, and standardising these scattered resources into open, interoperable datasets. We introduce the foundational \emph{Marito} dataset, released under the equitable, Africa-centered NOODL framework. To demonstrate its immediate utility, we integrate the terminology into a Retrieval-Augmented Generation (RAG) pipeline. Experiments show substantial improvements in the accuracy and domain-specific consistency of English-to-Tshivenda machine translation for large language models. \emph{Marito} provides a scalable foundation for developing robust and equitable NLP technologies, ensuring South Africa's rich linguistic diversity is represented in the digital age.
comment: Under Review
☆ MoKA: Mixture of Kronecker Adapters
Parameter-efficient fine-tuning (PEFT) is essential for reducing the computational overhead of large language models (LLMs). Low-rank family adapters are commonly used to control the parameter size efficiently while maintaining the generative power of LLMs. However, their limited expressiveness due to the rank constraint often restricts their performance on complex tasks. We propose Mixture of Kronecker Adapters (MoKA), a new generation of Kronecker adapters that addresses this limitation by modeling weight updates as a mixture of Kronecker products. Our proposed adapter leverages a gating mechanism that measures the importance of each Kronecker factor, enabling more expressive adaptation. Moreover, MoKA enables a rank flexibility that provides a better trade-off between parameter efficiency and accuracy. To ensure hardware efficiency, we reformulate Kronecker computations using standard matrix operations, allowing seamless deployment on GPU-optimized hardware. We conduct extensive experiments on instruction-tuning and commonsense reasoning tasks using low-bit quantized versions of LLaMA2-7B and LLaMA3-8B models. MoKA not only outperforms PEFT baselines, but also reduces the number of trainable parameters up to 27x, achieving state-of-the-art trade-offs between performance and parameter efficiency.
☆ FilBench: Can LLMs Understand and Generate Filipino?
Despite the impressive performance of LLMs on English-based tasks, little is known about their capabilities in specific languages such as Filipino. In this work, we address this gap by introducing FilBench, a Filipino-centric benchmark designed to evaluate LLMs across a diverse set of tasks and capabilities in Filipino, Tagalog, and Cebuano. We carefully curate the tasks in FilBench to reflect the priorities and trends of NLP research in the Philippines such as Cultural Knowledge, Classical NLP, Reading Comprehension, and Generation. By evaluating 27 state-of-the-art LLMs on FilBench, we find that several LLMs suffer from reading comprehension and translation capabilities. Our results indicate that FilBench is challenging, with the best model, GPT-4o, achieving only a score of 72.23%. Moreover, we also find that models trained specifically for Southeast Asian languages tend to underperform on FilBench, with the highest-performing model, SEA-LION v3 70B, achieving only a score of 61.07%. Our work demonstrates the value of curating language-specific LLM benchmarks to aid in driving progress on Filipino NLP and increasing the inclusion of Philippine languages in LLM development.
☆ UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Supervised learning for empathy regression is challenged by noisy self-reported empathy scores. While many algorithms have been proposed for learning with noisy labels in textual classification problems, the regression counterpart is relatively under-explored. We propose UPLME, an uncertainty-aware probabilistic language modelling framework to capture label noise in the regression setting of empathy detection. UPLME includes a probabilistic language model that predicts both empathy score and heteroscedastic uncertainty and is trained using Bayesian concepts with variational model ensembling. We further introduce two novel loss components: one penalises degenerate Uncertainty Quantification (UQ), and another enforces the similarity between the input pairs on which we predict empathy. UPLME provides state-of-the-art performance (Pearson Correlation Coefficient: $0.558\rightarrow0.580$ and $0.629\rightarrow0.634$) in terms of the performance reported in the literature in two public benchmarks, having label noise. Through synthetic label noise injection, we show that UPLME is effective in separating noisy and clean samples based on the predicted uncertainty. UPLME further outperform (Calibration error: $0.571\rightarrow0.376$) a recent variational model ensembling-based UQ method designed for regression problems.
comment: Code available at https://github.com/hasan-rakibul/UPLME
☆ Training Long-Context, Multi-Turn Software Engineering Agents with Reinforcement Learning
Research on applications of Reinforcement Learning (RL) to Large Language Models (LLMs) has mostly been focused on single-turn problems, such as mathematical reasoning or single-shot code generation. While these problems can be viewed as token-level multi-turn MDPs, this view corresponds to a degenerate case of multi-turn interaction where the environment provides no feedback. This contrasts with many real-world domains, such as software engineering (SWE), which require rich multi-turn interactions with a stateful environment that responds to each action with a non-trivial observation. To bridge this gap, we demonstrate the successful application of RL to this general regime. Using a modified Decoupled Advantage Policy Optimization (DAPO) algorithm, we train an agent based on Qwen2.5-72B-Instruct to solve real-world software engineering tasks. Our approach increases the agent's success rate on the SWE-bench Verified benchmark from a 20% rejection fine-tuned baseline to 39%, without relying on any teacher models. On SWE-rebench, our agent matches or outperforms leading open-weight models such as DeepSeek-V3-0324 and Qwen3-235B-A22B using an identical scaffolding, offering a viable path toward building more capable autonomous agents for complex real-world problems based on open models.
☆ CF-RAG: A Dataset and Method for Carbon Footprint QA Using Retrieval-Augmented Generation
Product sustainability reports provide valuable insights into the environmental impacts of a product and are often distributed in PDF format. These reports often include a combination of tables and text, which complicates their analysis. The lack of standardization and the variability in reporting formats further exacerbate the difficulty of extracting and interpreting relevant information from large volumes of documents. In this paper, we tackle the challenge of answering questions related to carbon footprints within sustainability reports available in PDF format. Unlike previous approaches, our focus is on addressing the difficulties posed by the unstructured and inconsistent nature of text extracted from PDF parsing. To facilitate this analysis, we introduce CarbonPDF-QA, an open-source dataset containing question-answer pairs for 1735 product report documents, along with human-annotated answers. Our analysis shows that GPT-4o struggles to answer questions with data inconsistencies. To address this limitation, we propose CarbonPDF, an LLM-based technique specifically designed to answer carbon footprint questions on such datasets. We develop CarbonPDF by fine-tuning Llama 3 with our training data. Our results show that our technique outperforms current state-of-the-art techniques, including question-answering (QA) systems finetuned on table and text data.
☆ Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models ICCV 2025
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
comment: Accepted at ICCV 2025
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval SemEval-2025
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Cropping outperforms dropout as an augmentation strategy for training self-supervised text embeddings
Text embeddings, i.e. vector representations of entire texts, play an important role in many NLP applications, such as retrieval-augmented generation, sentiment analysis, clustering, or visualizing collections of texts for data exploration. Currently, top-performing embedding models are derived from pre-trained language models via extensive supervised fine-tuning using curated text pairs. This contrasts with computer vision, where self-supervised training based on data augmentations has demonstrated remarkable success. Here we systematically compare the two most well-known augmentation strategies for positive pair generation in contrastive learning of text embeddings. We assess embedding quality on MTEB and additional in-domain evaluations and show that cropping augmentation strongly outperforms the dropout-based approach. We find that on out-of-domain data, the quality of resulting embeddings is below the supervised SOTA models, but for in-domain data, self-supervised fine-tuning produces high-quality text embeddings after very short fine-tuning, sometimes only marginally below the supervised SOTA. Finally, we show that representation quality increases towards the last transformer layers, which undergo the largest change during fine-tuning; and that fine-tuning only those last layers is sufficient to reach similar embedding quality.
LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 10 pages, 7 figures, working in progress
☆ Variety Is the Spice of Life: Detecting Misinformation with Dynamic Environmental Representations CIKM 2025
The proliferation of misinformation across diverse social media platforms has drawn significant attention from both academic and industrial communities due to its detrimental effects. Accordingly, automatically distinguishing misinformation, dubbed as Misinformation Detection (MD), has become an increasingly active research topic. The mainstream methods formulate MD as a static learning paradigm, which learns the mapping between the content, links, and propagation of news articles and the corresponding manual veracity labels. However, the static assumption is often violated, since in real-world scenarios, the veracity of news articles may vacillate within the dynamically evolving social environment. To tackle this problem, we propose a novel framework, namely Misinformation detection with Dynamic Environmental Representations (MISDER). The basic idea of MISDER lies in learning a social environmental representation for each period and employing a temporal model to predict the representation for future periods. In this work, we specify the temporal model as the LSTM model, continuous dynamics equation, and pre-trained dynamics system, suggesting three variants of MISDER, namely MISDER-LSTM, MISDER-ODE, and MISDER-PT, respectively. To evaluate the performance of MISDER, we compare it to various MD baselines across 2 prevalent datasets, and the experimental results can indicate the effectiveness of our proposed model.
comment: Accepted by CIKM 2025. 11 pages, 4 figures. Code: https://github.com/wangbing1416/MISDER
☆ NeuroSync: Intent-Aware Code-Based Problem Solving via Direct LLM Understanding Modification
Conversational LLMs have been widely adopted by domain users with limited programming experience to solve domain problems. However, these users often face misalignment between their intent and generated code, resulting in frustration and rounds of clarification. This work first investigates the cause of this misalignment, which dues to bidirectional ambiguity: both user intents and coding tasks are inherently nonlinear, yet must be expressed and interpreted through linear prompts and code sequences. To address this, we propose direct intent-task matching, a new human-LLM interaction paradigm that externalizes and enables direct manipulation of the LLM understanding, i.e., the coding tasks and their relationships inferred by the LLM prior to code generation. As a proof-of-concept, this paradigm is then implemented in NeuroSync, which employs a knowledge distillation pipeline to extract LLM understanding, user intents, and their mappings, and enhances the alignment by allowing users to intuitively inspect and edit them via visualizations. We evaluate the algorithmic components of NeuroSync via technical experiments, and assess its overall usability and effectiveness via a user study (N=12). The results show that it enhances intent-task alignment, lowers cognitive effort, and improves coding efficiency.
comment: Accepted in UIST 2025
☆ ReDSM5: A Reddit Dataset for DSM-5 Depression Detection CIKM 2025
Depression is a pervasive mental health condition that affects hundreds of millions of individuals worldwide, yet many cases remain undiagnosed due to barriers in traditional clinical access and pervasive stigma. Social media platforms, and Reddit in particular, offer rich, user-generated narratives that can reveal early signs of depressive symptomatology. However, existing computational approaches often label entire posts simply as depressed or not depressed, without linking language to specific criteria from the DSM-5, the standard clinical framework for diagnosing depression. This limits both clinical relevance and interpretability. To address this gap, we introduce ReDSM5, a novel Reddit corpus comprising 1484 long-form posts, each exhaustively annotated at the sentence level by a licensed psychologist for the nine DSM-5 depression symptoms. For each label, the annotator also provides a concise clinical rationale grounded in DSM-5 methodology. We conduct an exploratory analysis of the collection, examining lexical, syntactic, and emotional patterns that characterize symptom expression in social media narratives. Compared to prior resources, ReDSM5 uniquely combines symptom-specific supervision with expert explanations, facilitating the development of models that not only detect depression but also generate human-interpretable reasoning. We establish baseline benchmarks for both multi-label symptom classification and explanation generation, providing reference results for future research on detection and interpretability.
comment: Accepted as a resource paper at CIKM 2025
☆ A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning
General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs). Current LLMs fail to reason deterministically and are not interpretable. As such, there has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks. We first identify two main neurosymbolic approaches to improving logical reasoning: (i) the integrative approach comprising models where symbolic reasoning is contained within the neural network, and (ii) the hybrid approach comprising models where a symbolic solver, separate from the neural network, performs symbolic reasoning. Both contain AI systems with promising results on domain-specific logical reasoning benchmarks. However, their performance on domain-agnostic benchmarks is understudied. To the best of our knowledge, there has not been a comparison of the contrasting approaches that answers the following question: Which approach is more promising for developing general logical reasoning? To analyze their potential, the following best-in-class domain-agnostic models are introduced: Logic Neural Network (LNN), which uses the integrative approach, and LLM-Symbolic Solver (LLM-SS), which uses the hybrid approach. Using both models as case studies and representatives of each approach, our analysis demonstrates that the hybrid approach is more promising for developing general logical reasoning because (i) its reasoning chain is more interpretable, and (ii) it retains the capabilities and advantages of existing LLMs. To support future works using the hybrid approach, we propose a generalizable framework based on LLM-SS that is modular by design, model-agnostic, domain-agnostic, and requires little to no human input.
comment: Accepted to NeSy 2025
☆ Thinking with Nothinking Calibration: A New In-Context Learning Paradigm in Reasoning Large Language Models
Reasoning large language models (RLLMs) have recently demonstrated remarkable capabilities through structured and multi-step reasoning. While prior research has primarily focused on improving their training and inference strategies, their potential for in-context learning (ICL) remains largely underexplored. To fill this gap, we propose Thinking with Nothinking Calibration (JointThinking), a new ICL paradigm that leverages the structured difference between two reasoning modes, i.e., Thinking and Nothinking, to improve reasoning accuracy. Specifically, our method prompts the model to generate two answers in parallel: one in Thinking mode and the other in Nothinking mode. A second round of Thinking is triggered only when the two initial responses are inconsistent, using a single prompt that incorporates the original question and both candidate answers. Since such disagreement occurs infrequently (e.g., only 6\% in GSM8K), our method performs just one round of reasoning in most cases, resulting in minimal latency overhead. Extensive experiments across multiple reasoning benchmarks demonstrate that JointThinking significantly outperforms few-shot chain-of-thought (CoT) and majority voting with improved answer robustness. Moreover, It achieves comparable in-distribution performance to training-based SOTA method, while substantially outperforming on out-of-distribution tasks. We further conduct a systematic analysis of the calibration mechanism, showing that leveraging different reasoning modes consistently lowers the error rate and highlights the value of structural thinking diversity. Additionally, we observe that the performance gap between actual and ideal reasoning narrows as model size increases in the second round of thinking, indicating the strong scalability of our approach. Finally, we discuss current limitations and outline promising directions for future ICL research in RLLMs.
☆ Taggus: An Automated Pipeline for the Extraction of Characters' Social Networks from Portuguese Fiction Literature
Automatically identifying characters and their interactions from fiction books is, arguably, a complex task that requires pipelines that leverage multiple Natural Language Processing (NLP) methods, such as Named Entity Recognition (NER) and Part-of-speech (POS) tagging. However, these methods are not optimized for the task that leads to the construction of Social Networks of Characters. Indeed, the currently available methods tend to underperform, especially in less-represented languages, due to a lack of manually annotated data for training. Here, we propose a pipeline, which we call Taggus, to extract social networks from literary fiction works in Portuguese. Our results show that compared to readily available State-of-the-Art tools -- off-the-shelf NER tools and Large Language Models (ChatGPT) -- the resulting pipeline, which uses POS tagging and a combination of heuristics, achieves satisfying results with an average F1-Score of $94.1\%$ in the task of identifying characters and solving for co-reference and $75.9\%$ in interaction detection. These represent, respectively, an increase of $50.7\%$ and $22.3\%$ on results achieved by the readily available State-of-the-Art tools. Further steps to improve results are outlined, such as solutions for detecting relationships between characters. Limitations on the size and scope of our testing samples are acknowledged. The Taggus pipeline is publicly available to encourage development in this field for the Portuguese language.2
comment: 24 pages, 5 Figures, 4 Tables
☆ VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
comment: 13 pages, 5 figures
☆ CTTS: Collective Test-Time Scaling
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ Towards Trustworthy Multimodal Moderation via Policy-Aligned Reasoning and Hierarchical Labeling
Social platforms have revolutionized information sharing, but also accelerated the dissemination of harmful and policy-violating content. To ensure safety and compliance at scale, moderation systems must go beyond efficiency and offer accuracy and interpretability. However, current approaches largely rely on noisy, label-driven learning, lacking alignment with moderation rules and producing opaque decisions that hinder human review. Therefore, we propose Hierarchical Guard (Hi-Guard), a multimodal moderation framework that introduces a new policy-aligned decision paradigm. The term "Hierarchical" reflects two key aspects of our system design: (1) a hierarchical moderation pipeline, where a lightweight binary model first filters safe content and a stronger model handles fine-grained risk classification; and (2) a hierarchical taxonomy in the second stage, where the model performs path-based classification over a hierarchical taxonomy ranging from coarse to fine-grained levels. To ensure alignment with evolving moderation policies, Hi-Guard directly incorporates rule definitions into the model prompt. To further enhance structured prediction and reasoning, we introduce a multi-level soft-margin reward and optimize with Group Relative Policy Optimization (GRPO), penalizing semantically adjacent misclassifications and improving explanation quality. Extensive experiments and real-world deployment demonstrate that Hi-Guard achieves superior classification accuracy, generalization, and interpretability, paving the way toward scalable, transparent, and trustworthy content safety systems. Code is available at: https://github.com/lianqi1008/Hi-Guard.
☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, accepted at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
☆ Investigating Gender Bias in LLM-Generated Stories via Psychological Stereotypes
As Large Language Models (LLMs) are increasingly used across different applications, concerns about their potential to amplify gender biases in various tasks are rising. Prior research has often probed gender bias using explicit gender cues as counterfactual, or studied them in sentence completion and short question answering tasks. These formats might overlook more implicit forms of bias embedded in generative behavior of longer content. In this work, we investigate gender bias in LLMs using gender stereotypes studied in psychology (e.g., aggressiveness or gossiping) in an open-ended task of narrative generation. We introduce a novel dataset called StereoBias-Stories containing short stories either unconditioned or conditioned on (one, two, or six) random attributes from 25 psychological stereotypes and three task-related story endings. We analyze how the gender contribution in the overall story changes in response to these attributes and present three key findings: (1) While models, on average, are highly biased towards male in unconditioned prompts, conditioning on attributes independent from gender stereotypes mitigates this bias. (2) Combining multiple attributes associated with the same gender stereotype intensifies model behavior, with male ones amplifying bias and female ones alleviating it. (3) Model biases align with psychological ground-truth used for categorization, and alignment strength increases with model size. Together, these insights highlight the importance of psychology-grounded evaluation of LLMs.
comment: Under Review
☆ Understanding the Embedding Models on Hyper-relational Knowledge Graph CIKM 2025
Recently, Hyper-relational Knowledge Graphs (HKGs) have been proposed as an extension of traditional Knowledge Graphs (KGs) to better represent real-world facts with additional qualifiers. As a result, researchers have attempted to adapt classical Knowledge Graph Embedding (KGE) models for HKGs by designing extra qualifier processing modules. However, it remains unclear whether the superior performance of Hyper-relational KGE (HKGE) models arises from their base KGE model or the specially designed extension module. Hence, in this paper, we data-wise convert HKGs to KG format using three decomposition methods and then evaluate the performance of several classical KGE models on HKGs. Our results show that some KGE models achieve performance comparable to that of HKGE models. Upon further analysis, we find that the decomposition methods alter the original HKG topology and fail to fully preserve HKG information. Moreover, we observe that current HKGE models are either insufficient in capturing the graph's long-range dependency or struggle to integrate main-triple and qualifier information due to the information compression issue. To further justify our findings and offer a potential direction for future HKGE research, we propose the FormerGNN framework. This framework employs a qualifier integrator to preserve the original HKG topology, and a GNN-based graph encoder to capture the graph's long-range dependencies, followed by an improved approach for integrating main-triple and qualifier information to mitigate compression issues. Our experimental results demonstrate that FormerGNN outperforms existing HKGE models.
comment: Accepted by CIKM 2025
☆ Do language models accommodate their users? A study of linguistic convergence
While large language models (LLMs) are generally considered proficient in generating language, how similar their language usage is to that of humans remains understudied. In this paper, we test whether models exhibit linguistic convergence, a core pragmatic element of human language communication, asking: do models adapt, or converge, to the linguistic patterns of their user? To answer this, we systematically compare model completions of exisiting dialogues to the original human responses across sixteen language models, three dialogue corpora, and a variety of stylometric features. We find that models strongly converge to the conversation's style, often significantly overfitting relative to the human baseline. While convergence patterns are often feature-specific, we observe consistent shifts in convergence across modeling settings, with instruction-tuned and larger models converging less than their pretrained counterparts. Given the differences between human and model convergence patterns, we hypothesize that the underlying mechanisms for these behaviors are very different.
☆ LECTOR: LLM-Enhanced Concept-based Test-Oriented Repetition for Adaptive Spaced Learning
Spaced repetition systems are fundamental to efficient learning and memory retention, but existing algorithms often struggle with semantic interference and personalized adaptation. We present LECTOR (\textbf{L}LM-\textbf{E}nhanced \textbf{C}oncept-based \textbf{T}est-\textbf{O}riented \textbf{R}epetition), a novel adaptive scheduling algorithm specifically designed for test-oriented learning scenarios, particularly language examinations where success rate is paramount. LECTOR leverages large language models for semantic analysis while incorporating personalized learning profiles, addressing the critical challenge of semantic confusion in vocabulary learning by utilizing LLM-powered semantic similarity assessment and integrating it with established spaced repetition principles. Our comprehensive evaluation against six baseline algorithms (SSP-MMC, SM2, HLR, FSRS, ANKI, THRESHOLD) across 100 simulated learners over 100 days demonstrates significant improvements: LECTOR achieves a 90.2\% success rate compared to 88.4\% for the best baseline (SSP-MMC), representing a 2.0\% relative improvement. The algorithm shows particular strength in handling semantically similar concepts, reducing confusion-induced errors while maintaining computational efficiency. Our results establish LECTOR as a promising direction for intelligent tutoring systems and adaptive learning platforms.
comment: 15 pages, 4 figures, 1 table
☆ Pay What LLM Wants: Can LLM Simulate Economics Experiment with 522 Real-human Persona?
Recent advances in Large Language Models (LLMs) have generated significant interest in their capacity to simulate human-like behaviors, yet most studies rely on fictional personas rather than actual human data. We address this limitation by evaluating LLMs' ability to predict individual economic decision-making using Pay-What-You-Want (PWYW) pricing experiments with real 522 human personas. Our study systematically compares three state-of-the-art multimodal LLMs using detailed persona information from 522 Korean participants in cultural consumption scenarios. We investigate whether LLMs can accurately replicate individual human choices and how persona injection methods affect prediction performance. Results reveal that while LLMs struggle with precise individual-level predictions, they demonstrate reasonable group-level behavioral tendencies. Also, we found that commonly adopted prompting techniques are not much better than naive prompting methods; reconstruction of personal narrative nor retrieval augmented generation have no significant gain against simple prompting method. We believe that these findings can provide the first comprehensive evaluation of LLMs' capabilities on simulating economic behavior using real human data, offering empirical guidance for persona-based simulation in computational social science.
comment: Preprint
☆ Exploring Stability-Plasticity Trade-offs for Continual Named Entity Recognition
Continual Named Entity Recognition (CNER) is an evolving field that focuses on sequentially updating an existing model to incorporate new entity types. Previous CNER methods primarily utilize Knowledge Distillation (KD) to preserve prior knowledge and overcome catastrophic forgetting, strictly ensuring that the representations of old and new models remain consistent. Consequently, they often impart the model with excessive stability (i.e., retention of old knowledge) but limited plasticity (i.e., acquisition of new knowledge). To address this issue, we propose a Stability-Plasticity Trade-off (SPT) method for CNER that balances these aspects from both representation and weight perspectives. From the representation perspective, we introduce a pooling operation into the original KD, permitting a level of plasticity by consolidating representation dimensions. From the weight perspective, we dynamically merge the weights of old and new models, strengthening old knowledge while maintaining new knowledge. During this fusion, we implement a weight-guided selective mechanism to prioritize significant weights. Moreover, we develop a confidence-based pseudo-labeling approach for the current non-entity type, which predicts entity types using the old model to handle the semantic shift of the non-entity type, a challenge specific to CNER that has largely been ignored by previous methods. Extensive experiments across ten CNER settings on three benchmark datasets demonstrate that our SPT method surpasses previous CNER approaches, highlighting its effectiveness in achieving a suitable stability-plasticity trade-off.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing
☆ RooseBERT: A New Deal For Political Language Modelling
The increasing amount of political debates and politics-related discussions calls for the definition of novel computational methods to automatically analyse such content with the final goal of lightening up political deliberation to citizens. However, the specificity of the political language and the argumentative form of these debates (employing hidden communication strategies and leveraging implicit arguments) make this task very challenging, even for current general-purpose pre-trained Language Models. To address this issue, we introduce a novel pre-trained Language Model for political discourse language called RooseBERT. Pre-training a language model on a specialised domain presents different technical and linguistic challenges, requiring extensive computational resources and large-scale data. RooseBERT has been trained on large political debate and speech corpora (8K debates, each composed of several sub-debates on different topics) in English. To evaluate its performances, we fine-tuned it on four downstream tasks related to political debate analysis, i.e., named entity recognition, sentiment analysis, argument component detection and classification, and argument relation prediction and classification. Our results demonstrate significant improvements over general-purpose Language Models on these four tasks, highlighting how domain-specific pre-training enhances performance in political debate analysis. We release the RooseBERT language model for the research community.
☆ Somatic in the East, Psychological in the West?: Investigating Clinically-Grounded Cross-Cultural Depression Symptom Expression in LLMs
Prior clinical psychology research shows that Western individuals with depression tend to report psychological symptoms, while Eastern individuals report somatic ones. We test whether Large Language Models (LLMs), which are increasingly used in mental health, reproduce these cultural patterns by prompting them with Western or Eastern personas. Results show that LLMs largely fail to replicate the patterns when prompted in English, though prompting in major Eastern languages (i.e., Chinese, Japanese, and Hindi) improves alignment in several configurations. Our analysis pinpoints two key reasons for this failure: the models' low sensitivity to cultural personas and a strong, culturally invariant symptom hierarchy that overrides cultural cues. These findings reveal that while prompt language is important, current general-purpose LLMs lack the robust, culture-aware capabilities essential for safe and effective mental health applications.
☆ CardiffNLP at CLEARS-2025: Prompting Large Language Models for Plain Language and Easy-to-Read Text Rewriting
This paper details the CardiffNLP team's contribution to the CLEARS shared task on Spanish text adaptation, hosted by IberLEF 2025. The shared task contained two subtasks and the team submitted to both. Our team took an LLM-prompting approach with different prompt variations. While we initially experimented with LLaMA-3.2, we adopted Gemma-3 for our final submission, and landed third place in Subtask 1 and second place in Subtask 2. We detail our numerous prompt variations, examples, and experimental results.
☆ Probing Syntax in Large Language Models: Successes and Remaining Challenges
The syntactic structures of sentences can be readily read-out from the activations of large language models (LLMs). However, the ``structural probes'' that have been developed to reveal this phenomenon are typically evaluated on an indiscriminate set of sentences. Consequently, it remains unclear whether structural and/or statistical factors systematically affect these syntactic representations. To address this issue, we conduct an in-depth analysis of structural probes on three controlled benchmarks. Our results are three-fold. First, structural probes are biased by a superficial property: the closer two words are in a sentence, the more likely structural probes will consider them as syntactically linked. Second, structural probes are challenged by linguistic properties: they poorly represent deep syntactic structures, and get interfered by interacting nouns or ungrammatical verb forms. Third, structural probes do not appear to be affected by the predictability of individual words. Overall, this work sheds light on the current challenges faced by structural probes. Providing a benchmark made of controlled stimuli to better evaluate their performance.
☆ Current State in Privacy-Preserving Text Preprocessing for Domain-Agnostic NLP
Privacy is a fundamental human right. Data privacy is protected by different regulations, such as GDPR. However, modern large language models require a huge amount of data to learn linguistic variations, and the data often contains private information. Research has shown that it is possible to extract private information from such language models. Thus, anonymizing such private and sensitive information is of utmost importance. While complete anonymization may not be possible, a number of different pre-processing approaches exist for masking or pseudonymizing private information in textual data. This report focuses on a few of such approaches for domain-agnostic NLP tasks.
comment: To be published in the Proceedings of Die Studierendenkonferenz Informatik (SKILL) 2024
☆ Beyond Content: How Grammatical Gender Shapes Visual Representation in Text-to-Image Models
Research on bias in Text-to-Image (T2I) models has primarily focused on demographic representation and stereotypical attributes, overlooking a fundamental question: how does grammatical gender influence visual representation across languages? We introduce a cross-linguistic benchmark examining words where grammatical gender contradicts stereotypical gender associations (e.g., ``une sentinelle'' - grammatically feminine in French but referring to the stereotypically masculine concept ``guard''). Our dataset spans five gendered languages (French, Spanish, German, Italian, Russian) and two gender-neutral control languages (English, Chinese), comprising 800 unique prompts that generated 28,800 images across three state-of-the-art T2I models. Our analysis reveals that grammatical gender dramatically influences image generation: masculine grammatical markers increase male representation to 73\% on average (compared to 22\% with gender-neutral English), while feminine grammatical markers increase female representation to 38\% (compared to 28\% in English). These effects vary systematically by language resource availability and model architecture, with high-resource languages showing stronger effects. Our findings establish that language structure itself, not just content, shapes AI-generated visual outputs, introducing a new dimension for understanding bias and fairness in multilingual, multimodal systems.
☆ Analyzing German Parliamentary Speeches: A Machine Learning Approach for Topic and Sentiment Classification
This study investigates political discourse in the German parliament, the Bundestag, by analyzing approximately 28,000 parliamentary speeches from the last five years. Two machine learning models for topic and sentiment classification were developed and trained on a manually labeled dataset. The models showed strong classification performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.94 for topic classification (average across topics) and 0.89 for sentiment classification. Both models were applied to assess topic trends and sentiment distributions across political parties and over time. The analysis reveals remarkable relationships between parties and their role in parliament. In particular, a change in style can be observed for parties moving from government to opposition. While ideological positions matter, governing responsibilities also shape discourse. The analysis directly addresses key questions about the evolution of topics, sentiment dynamics, and party-specific discourse strategies in the Bundestag.
comment: Accepted at 20th International Conference on Wirtschaftsinformatik (WI25); September 2025, M\"unster, Germany
☆ Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following
While advancements in the reasoning abilities of LLMs have significantly enhanced their performance in solving mathematical problems, coding tasks, and general puzzles, their effectiveness in accurately adhering to instructions remains inconsistent, particularly with more complex directives. Our investigation identifies lazy reasoning during the thinking stage as the primary factor contributing to poor instruction adherence. To mitigate this issue, we propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking, essential for satisfying strict instruction constraints. Specifically, we first generate instructions with complex constraints and apply a filtering process to obtain valid prompts, resulting in three distinct prompt datasets categorized as hard, easy, and pass. Then, we employ rejection sampling on the pass prompts to curate a small yet high-quality dataset, enabling a cold-start initialization of the model and facilitating its adaptation to effective reasoning patterns. Subsequently, we employ an entropy-preserving supervised fine-tuning (Entropy-SFT) strategy coupled with token-wise entropy-adaptive (TEA-RL) reinforcement learning guided by rule-based dense rewards. This approach encourages the model to transform its reasoning mechanism, ultimately fostering generalizable reasoning abilities that encompass preview and self-checking. Extensive experiments conducted on instruction-following benchmarks demonstrate remarkable performance improvements across various model scales. Notably, our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
comment: 12 pages, 10 figures, 7 tables
☆ ChartCap: Mitigating Hallucination of Dense Chart Captioning ICCV 2025
Generating accurate, informative, and hallucination-free captions for charts remains challenging for vision language models, primarily due to the lack of large-scale, high-quality datasets of real-world charts. However, existing real-world chart datasets suffer from the inclusion of extraneous information that cannot be inferred from the chart and failure to sufficiently capture structural elements and key insights. Therefore, we introduce ChartCap, a large-scale dataset of 565K real-world chart images paired with type-specific, dense captions that exclude extraneous information and highlight both structural elements and key insights in detail. To build ChartCap, we design a four-stage pipeline that generates captions using only the discernible data from the chart and employ a cycle consistency-based human verification, which accelerates quality control without sacrificing accuracy. Additionally, we propose a novel metric, the Visual Consistency Score, which evaluates caption quality by measuring the similarity between the chart regenerated from a caption and the original chart, independent of reference captions. Extensive experiments confirms that models fine-tuned on ChartCap consistently generate more accurate and informative captions with reduced hallucinations, surpassing both open-source and proprietary models and even human-annotated captions.
comment: ICCV 2025 (Highlight)
☆ RCP-Merging: Merging Long Chain-of-Thought Models with Domain-Specific Models by Considering Reasoning Capability as Prior
Large Language Models (LLMs) with long chain-of-thought (CoT) capability, termed Reasoning Models, demonstrate superior intricate problem-solving abilities through multi-step long CoT reasoning. To create a dual-capability model with long CoT capability and domain-specific knowledge without substantial computational and data costs, model merging emerges as a highly resource-efficient method. However, significant challenges lie in merging domain-specific LLMs with long CoT ones since nowadays merging methods suffer from reasoning capability degradation, even gibberish output and output collapse. To overcome this, we introduce RCP-Merging: Merging Long Chain-of-Thought Models with Domain-Specific Models by Considering Reasoning Capability as Prior, a novel merging framework designed to integrate domain-specific LLMs with long CoT capability, meanwhile maintaining model performance in the original domain. Treating reasoning model weights as foundational prior, our method utilizes a reasoning capability indicator to preserve core long CoT capability model weights while selectively merging essential domain-specific weights. We conducted extensive experiments on Qwen2.5-7B, Llama3.1-8B, and Qwen2.5-1.5B models in BioMedicine and Finance domains. Our results show that RCP-Merging successfully merges a reasoning model with domain-specific ones, improving domain task performance by 9.5% and 9.2% over state-of-the-art methods, without significantly harming the original long CoT reasoning capability.
comment: 15 pages, 7 figures
☆ Long Story Generation via Knowledge Graph and Literary Theory
The generation of a long story consisting of several thousand words is a sub-task in the field of long text generation~(LTG). Previous research has addressed this challenge through outline-based generation, which employs a multi-stage method for generating outlines into stories. However, this approach suffers from two common issues: almost inevitable theme drift caused by the loss of memory of previous outlines, and tedious plots with incoherent logic that are less appealing to human readers. In this paper, we propose the multi-agent Story Generator structure to improve the multi-stage method, using large language models~(LLMs) as the core components of agents. To avoid theme drift, we introduce a memory storage model comprising two components: a long-term memory storage that identifies the most important memories, thereby preventing theme drift; and a short-term memory storage that retains the latest outlines from each generation round. To incorporate engaging elements into the story, we design a story theme obstacle framework based on literary narratology theory that introduces uncertain factors and evaluation criteria to generate outline. This framework calculates the similarity of the former storyline and enhances the appeal of the story by building a knowledge graph and integrating new node content. Additionally, we establish a multi-agent interaction stage to simulate writer-reader interaction through dialogue and revise the story text according to feedback, to ensure it remains consistent and logical. Evaluations against previous methods demonstrate that our approach can generate higher-quality long stories.
☆ Cross-lingual Opinions and Emotions Mining in Comparable Documents
Comparable texts are topic-aligned documents in multiple languages that are not direct translations. They are valuable for understanding how a topic is discussed across languages. This research studies differences in sentiments and emotions across English-Arabic comparable documents. First, texts are annotated with sentiment and emotion labels. We apply a cross-lingual method to label documents with opinion classes (subjective/objective), avoiding reliance on machine translation. To annotate with emotions (anger, disgust, fear, joy, sadness, surprise), we manually translate the English WordNet-Affect (WNA) lexicon into Arabic, creating bilingual emotion lexicons used to label the comparable corpora. We then apply a statistical measure to assess the agreement of sentiments and emotions in each source-target document pair. This comparison is especially relevant when the documents originate from different sources. To our knowledge, this aspect has not been explored in prior literature. Our study includes English-Arabic document pairs from Euronews, BBC, and Al-Jazeera (JSC). Results show that sentiment and emotion annotations align when articles come from the same news agency and diverge when they come from different ones. The proposed method is language-independent and generalizable to other language pairs.
comment: 16 pages, 5 figures
☆ Token-Level Precise Attack on RAG: Searching for the Best Alternatives to Mislead Generation
While large language models (LLMs) have achieved remarkable success in providing trustworthy responses for knowledge-intensive tasks, they still face critical limitations such as hallucinations and outdated knowledge. To address these issues, the retrieval-augmented generation (RAG) framework enhances LLMs with access to external knowledge via a retriever, enabling more accurate and real-time outputs about the latest events. However, this integration brings new security vulnerabilities: the risk that malicious content in the external database can be retrieved and used to manipulate model outputs. Although prior work has explored attacks on RAG systems, existing approaches either rely heavily on access to the retriever or fail to jointly consider both retrieval and generation stages, limiting their effectiveness, particularly in black-box scenarios. To overcome these limitations, we propose Token-level Precise Attack on the RAG (TPARAG), a novel framework that targets both white-box and black-box RAG systems. TPARAG leverages a lightweight white-box LLM as an attacker to generate and iteratively optimize malicious passages at the token level, ensuring both retrievability and high attack success in generation. Extensive experiments on open-domain QA datasets demonstrate that TPARAG consistently outperforms previous approaches in retrieval-stage and end-to-end attack effectiveness. These results further reveal critical vulnerabilities in RAG pipelines and offer new insights into improving their robustness.
☆ Privacy-Aware Decoding: Mitigating Privacy Leakage of Large Language Models in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances the factual accuracy of large language models (LLMs) by conditioning outputs on external knowledge sources. However, when retrieval involves private or sensitive data, RAG systems are susceptible to extraction attacks that can leak confidential information through generated responses. We propose Privacy-Aware Decoding (PAD), a lightweight, inference-time defense that adaptively injects calibrated Gaussian noise into token logits during generation. PAD integrates confidence-based screening to selectively protect high-risk tokens, efficient sensitivity estimation to minimize unnecessary noise, and context-aware noise calibration to balance privacy with generation quality. A \renyi Differential Privacy (RDP) accountant rigorously tracks cumulative privacy loss, enabling explicit per-response $(\varepsilon, \delta)$-DP guarantees for sensitive outputs. Unlike prior approaches requiring retraining or corpus-level filtering, PAD is model-agnostic and operates entirely at decoding time with minimal computational overhead. Experiments on three real-world datasets demonstrate that PAD substantially reduces private information leakage while preserving response utility, outperforming existing retrieval- and post-processing-based defenses. Our work takes an important step toward mitigating privacy risks in RAG via decoding strategies, paving the way for universal and scalable privacy solutions in sensitive domains. Our code is available: https://github.com/wang2226/PAD.
☆ Toward Verifiable Misinformation Detection: A Multi-Tool LLM Agent Framework
With the proliferation of Large Language Models (LLMs), the detection of misinformation has become increasingly important and complex. This research proposes an innovative verifiable misinformation detection LLM agent that goes beyond traditional true/false binary judgments. The agent actively verifies claims through dynamic interaction with diverse web sources, assesses information source credibility, synthesizes evidence, and provides a complete verifiable reasoning process. Our designed agent architecture includes three core tools: precise web search tool, source credibility assessment tool and numerical claim verification tool. These tools enable the agent to execute multi-step verification strategies, maintain evidence logs, and form comprehensive assessment conclusions. We evaluate using standard misinformation datasets such as FakeNewsNet, comparing with traditional machine learning models and LLMs. Evaluation metrics include standard classification metrics, quality assessment of reasoning processes, and robustness testing against rewritten content. Experimental results show that our agent outperforms baseline methods in misinformation detection accuracy, reasoning transparency, and resistance to information rewriting, providing a new paradigm for trustworthy AI-assisted fact-checking.
☆ VRPO: Rethinking Value Modeling for Robust RL Training under Noisy Supervision
Reinforcement Learning from Human Feedback (RLHF) often suffers from noisy or imperfect reward supervision in real-world settings, which undermines policy stability and generalization. Such noise may cause models to lose attention on key words during advantage estimation. While prior work focuses on reward denoising or filtering poor data, it often overlooks the critical role of the value model in policy optimization. In this work, we show that a strong value model is essential for mitigating noise by absorbing unstable signals and enabling more reliable advantage estimation. We propose VRPO, a value-centric framework for robust PPO training under noisy supervision. VRPO combines two core designs: (1) an auxiliary loss guided by entropy and perplexity from a frozen language model, and (2) a variational information bottleneck. These mechanisms enhance the value model's ability to filter out noise and capture key words from the context during advantage estimation, transforming it from a passive predictor into an active regulator of noise. Experiments on math reasoning, science QA, and multi-turn dialogue, under both rule-based and model-based noisy rewards, show that VRPO consistently outperforms PPO and GRPO baselines. Our findings underscore the often-overlooked importance of the value model in RLHF and offer a principled and practical approach to robust policy optimization in noisy real-world environments.
☆ When Algorithms Meet Artists: Topic Modeling the AI-Art Debate, 2013-2025
As generative AI continues to reshape artistic production and alternate modes of human expression, artists whose livelihoods are most directly affected have raised urgent concerns about consent, transparency, and the future of creative labor. However, the voices of artists are often marginalized in dominant public and scholarly discourse. This study presents a twelve-year analysis, from 2013 to 2025, of English-language discourse surrounding AI-generated art. It draws from 439 curated 500-word excerpts sampled from opinion articles, news reports, blogs, legal filings, and spoken-word transcripts. Through a reproducible methodology, we identify five stable thematic clusters and uncover a misalignment between artists' perceptions and prevailing media narratives. Our findings highlight how the use of technical jargon can function as a subtle form of gatekeeping, often sidelining the very issues artists deem most urgent. Our work provides a BERTopic-based methodology and a multimodal baseline for future research, alongside a clear call for deeper, transparency-driven engagement with artist perspectives in the evolving AI-creative landscape.
comment: 18 pages, 5 figures, 5 tables
☆ AGENTiGraph: A Multi-Agent Knowledge Graph Framework for Interactive, Domain-Specific LLM Chatbots CIKM 2025
AGENTiGraph is a user-friendly, agent-driven system that enables intuitive interaction and management of domain-specific data through the manipulation of knowledge graphs in natural language. It gives non-technical users a complete, visual solution to incrementally build and refine their knowledge bases, allowing multi-round dialogues and dynamic updates without specialized query languages. The flexible design of AGENTiGraph, including intent classification, task planning, and automatic knowledge integration, ensures seamless reasoning between diverse tasks. Evaluated on a 3,500-query benchmark within an educational scenario, the system outperforms strong zero-shot baselines (achieving 95.12% classification accuracy, 90.45% execution success), indicating potential scalability to compliance-critical or multi-step queries in legal and medical domains, e.g., incorporating new statutes or research on the fly. Our open-source demo offers a powerful new paradigm for multi-turn enterprise knowledge management that bridges LLMs and structured graphs.
comment: CIKM 2025, Demo Track
☆ CoCoTen: Detecting Adversarial Inputs to Large Language Models through Latent Space Features of Contextual Co-occurrence Tensors
The widespread use of Large Language Models (LLMs) in many applications marks a significant advance in research and practice. However, their complexity and hard-to-understand nature make them vulnerable to attacks, especially jailbreaks designed to produce harmful responses. To counter these threats, developing strong detection methods is essential for the safe and reliable use of LLMs. This paper studies this detection problem using the Contextual Co-occurrence Matrix, a structure recognized for its efficacy in data-scarce environments. We propose a novel method leveraging the latent space characteristics of Contextual Co-occurrence Matrices and Tensors for the effective identification of adversarial and jailbreak prompts. Our evaluations show that this approach achieves a notable F1 score of 0.83 using only 0.5% of labeled prompts, which is a 96.6% improvement over baselines. This result highlights the strength of our learned patterns, especially when labeled data is scarce. Our method is also significantly faster, speedup ranging from 2.3 to 128.4 times compared to the baseline models. To support future research and reproducibility, we have made our implementation publicly available.
☆ Unified Tool Integration for LLMs: A Protocol-Agnostic Approach to Function Calling
The proliferation of tool-augmented Large Language Models (LLMs) has created a fragmented ecosystem where developers must navigate multiple protocols, manual schema definitions, and complex execution workflows. We address this challenge by proposing a unified approach to tool integration that abstracts protocol differences while optimizing execution performance. Our solution demonstrates how protocol-agnostic design principles can significantly reduce development overhead through automated schema generation, dual-mode concurrent execution, and seamless multi-source tool management. Experimental results show 60-80% code reduction across integration scenarios, performance improvements up to 3.1x through optimized concurrency, and full compatibility with existing function calling standards. This work contributes both theoretical insights into tool integration architecture and practical solutions for real-world LLM application development.
comment: arXiv admin note: substantial text overlap with arXiv:2507.10593
☆ Data and AI governance: Promoting equity, ethics, and fairness in large language models
In this paper, we cover approaches to systematically govern, assess and quantify bias across the complete life cycle of machine learning models, from initial development and validation to ongoing production monitoring and guardrail implementation. Building upon our foundational work on the Bias Evaluation and Assessment Test Suite (BEATS) for Large Language Models, the authors share prevalent bias and fairness related gaps in Large Language Models (LLMs) and discuss data and AI governance framework to address Bias, Ethics, Fairness, and Factuality within LLMs. The data and AI governance approach discussed in this paper is suitable for practical, real-world applications, enabling rigorous benchmarking of LLMs prior to production deployment, facilitating continuous real-time evaluation, and proactively governing LLM generated responses. By implementing the data and AI governance across the life cycle of AI development, organizations can significantly enhance the safety and responsibility of their GenAI systems, effectively mitigating risks of discrimination and protecting against potential reputational or brand-related harm. Ultimately, through this article, we aim to contribute to advancement of the creation and deployment of socially responsible and ethically aligned generative artificial intelligence powered applications.
comment: Published in MIT Science Policy Review 6, 139-146 (2025)
☆ Accelerating Scientific Discovery with Multi-Document Summarization of Impact-Ranked Papers
The growing volume of scientific literature makes it challenging for scientists to move from a list of papers to a synthesized understanding of a topic. Because of the constant influx of new papers on a daily basis, even if a scientist identifies a promising set of papers, they still face the tedious task of individually reading through dozens of titles and abstracts to make sense of occasionally conflicting findings. To address this critical bottleneck in the research workflow, we introduce a summarization feature to BIP! Finder, a scholarly search engine that ranks literature based on distinct impact aspects like popularity and influence. Our approach enables users to generate two types of summaries from top-ranked search results: a concise summary for an instantaneous at-a-glance comprehension and a more comprehensive literature review-style summary for greater, better-organized comprehension. This ability dynamically leverages BIP! Finder's already existing impact-based ranking and filtering features to generate context-sensitive, synthesized narratives that can significantly accelerate literature discovery and comprehension.
☆ ASTRA: Autonomous Spatial-Temporal Red-teaming for AI Software Assistants
AI coding assistants like GitHub Copilot are rapidly transforming software development, but their safety remains deeply uncertain-especially in high-stakes domains like cybersecurity. Current red-teaming tools often rely on fixed benchmarks or unrealistic prompts, missing many real-world vulnerabilities. We present ASTRA, an automated agent system designed to systematically uncover safety flaws in AI-driven code generation and security guidance systems. ASTRA works in three stages: (1) it builds structured domain-specific knowledge graphs that model complex software tasks and known weaknesses; (2) it performs online vulnerability exploration of each target model by adaptively probing both its input space, i.e., the spatial exploration, and its reasoning processes, i.e., the temporal exploration, guided by the knowledge graphs; and (3) it generates high-quality violation-inducing cases to improve model alignment. Unlike prior methods, ASTRA focuses on realistic inputs-requests that developers might actually ask-and uses both offline abstraction guided domain modeling and online domain knowledge graph adaptation to surface corner-case vulnerabilities. Across two major evaluation domains, ASTRA finds 11-66% more issues than existing techniques and produces test cases that lead to 17% more effective alignment training, showing its practical value for building safer AI systems.
comment: The first two authors (Xiangzhe Xu and Guangyu Shen) contributed equally to this work
☆ CAP-LLM: Context-Augmented Personalized Large Language Models for News Headline Generation
In the era of information overload, personalized news headline generation is crucial for engaging users by tailoring content to their preferences while accurately conveying news facts. Existing methods struggle with effectively capturing complex user interests and ensuring factual consistency, often leading to generic or misleading headlines. Leveraging the unprecedented capabilities of Large Language Models (LLMs) in text generation, we propose Context-Augmented Personalized LLM (CAP-LLM), a novel framework that integrates user preferences and factual consistency constraints into a powerful pre-trained LLM backbone. CAP-LLM features a User Preference Encoder to capture long-term user interests, a Context Injection Adapter to seamlessly integrate these preferences and current article context into the LLM's generation process, and a Fact-Consistency Reinforcement Module employing a novel contrastive loss to mitigate hallucination. Evaluated on the real-world PENS dataset, CAP-LLM achieves state-of-the-art performance across all metrics. Notably, it significantly improves factual consistency (FactCC of 87.50) over strong baselines like BART (86.67), while simultaneously enhancing personalization (Pc(avg) 2.73, Pc(max) 17.25) and content coverage (ROUGE-1 26.55, ROUGE-2 9.95, ROUGE-L 23.01). Our ablation studies, human evaluations, and sensitivity analyses further validate the effectiveness of each component and the robustness of our approach, demonstrating CAP-LLM's ability to achieve a superior balance between personalization and factual accuracy in news headline generation.
☆ CoAct-1: Computer-using Agents with Coding as Actions
Autonomous agents that operate computers via Graphical User Interfaces (GUIs) often struggle with efficiency and reliability on complex, long-horizon tasks. While augmenting these agents with planners can improve task decomposition, they remain constrained by the inherent limitations of performing all actions through GUI manipulation, leading to brittleness and inefficiency. In this work, we introduce a more robust and flexible paradigm: enabling agents to use coding as a enhanced action. We present CoAct-1, a novel multi-agent system that synergistically combines GUI-based control with direct programmatic execution. CoAct-1 features an Orchestrator that dynamically delegates subtasks to either a conventional GUI Operator or a specialized Programmer agent, which can write and execute Python or Bash scripts. This hybrid approach allows the agent to bypass inefficient GUI action sequences for tasks like file management and data processing, while still leveraging visual interaction when necessary. We evaluate our system on the challenging OSWorld benchmark, where CoAct-1 achieves a new state-of-the-art success rate of 60.76%, significantly outperforming prior methods. Furthermore, our approach dramatically improves efficiency, reducing the average number of steps required to complete a task to just 10.15, compared to 15 for leading GUI agents. Our results demonstrate that integrating coding as a core action provides a more powerful, efficient, and scalable path toward generalized computer automation.
☆ Sotopia-RL: Reward Design for Social Intelligence
Social intelligence has become a critical capability for large language models (LLMs), enabling them to engage effectively in real-world social tasks such as accommodation, persuasion, collaboration, and negotiation. Reinforcement learning (RL) is a natural fit for training socially intelligent agents because it allows models to learn sophisticated strategies directly through social interactions. However, social interactions have two key characteristics that set barriers for RL training: (1) partial observability, where utterances have indirect and delayed effects that complicate credit assignment, and (2) multi-dimensionality, where behaviors such as rapport-building or knowledge-seeking contribute indirectly to goal achievement. These characteristics make Markov decision process (MDP)-based RL with single-dimensional episode-level rewards inefficient and unstable. To address these challenges, we propose Sotopia-RL, a novel framework that refines coarse episode-level feedback into utterance-level, multi-dimensional rewards. Utterance-level credit assignment mitigates partial observability by attributing outcomes to individual utterances, while multi-dimensional rewards capture the full richness of social interactions and reduce reward hacking. Experiments in Sotopia, an open-ended social learning environment, demonstrate that Sotopia-RL achieves state-of-the-art social goal completion scores (7.17 on Sotopia-hard and 8.31 on Sotopia-full), significantly outperforming existing approaches. Ablation studies confirm the necessity of both utterance-level credit assignment and multi-dimensional reward design for RL training. Our implementation is publicly available at: https://github.com/sotopia-lab/sotopia-rl.
comment: 10 pages
☆ An Entity Linking Agent for Question Answering AAAI 2026
Some Question Answering (QA) systems rely on knowledge bases (KBs) to provide accurate answers. Entity Linking (EL) plays a critical role in linking natural language mentions to KB entries. However, most existing EL methods are designed for long contexts and do not perform well on short, ambiguous user questions in QA tasks. We propose an entity linking agent for QA, based on a Large Language Model that simulates human cognitive workflows. The agent actively identifies entity mentions, retrieves candidate entities, and makes decision. To verify the effectiveness of our agent, we conduct two experiments: tool-based entity linking and QA task evaluation. The results confirm the robustness and effectiveness of our agent.
comment: 12 pages, 2 figures. Submitted to AAAI 2026 Conference
☆ Hallucination to Truth: A Review of Fact-Checking and Factuality Evaluation in Large Language Models
Large Language Models (LLMs) are trained on vast and diverse internet corpora that often include inaccurate or misleading content. Consequently, LLMs can generate misinformation, making robust fact-checking essential. This review systematically analyzes how LLM-generated content is evaluated for factual accuracy by exploring key challenges such as hallucinations, dataset limitations, and the reliability of evaluation metrics. The review emphasizes the need for strong fact-checking frameworks that integrate advanced prompting strategies, domain-specific fine-tuning, and retrieval-augmented generation (RAG) methods. It proposes five research questions that guide the analysis of the recent literature from 2020 to 2025, focusing on evaluation methods and mitigation techniques. The review also discusses the role of instruction tuning, multi-agent reasoning, and external knowledge access via RAG frameworks. Key findings highlight the limitations of current metrics, the value of grounding outputs with validated external evidence, and the importance of domain-specific customization to improve factual consistency. Overall, the review underlines the importance of building LLMs that are not only accurate and explainable but also tailored for domain-specific fact-checking. These insights contribute to the advancement of research toward more trustworthy and context-aware language models.
comment: 30 pages, 11 figures, 6 tables. Submitted to Artificial Intelligence Review for peer review
☆ Majority Bit-Aware Watermarking For Large Language Models
The growing deployment of Large Language Models (LLMs) in real-world applications has raised concerns about their potential misuse in generating harmful or deceptive content. To address this issue, watermarking techniques have emerged as a promising solution by embedding identifiable binary messages into generated text for origin verification and misuse tracing. While recent efforts have explored multi-bit watermarking schemes capable of embedding rich information such as user identifiers, they typically suffer from the fundamental trade-off between text quality and decoding accuracy: to ensure reliable message decoding, they have to restrict the size of preferred token sets during encoding, yet such restrictions reduce the quality of the generated content. In this work, we propose MajorMark, a novel watermarking method that improves this trade-off through majority bit-aware encoding. MajorMark selects preferred token sets based on the majority bit of the message, enabling a larger and more flexible sampling of tokens. In contrast to prior methods that rely on token frequency analysis for decoding, MajorMark employs a clustering-based decoding strategy, which maintains high decoding accuracy even when the preferred token set is large, thus preserving both content quality and decoding accuracy. We further introduce MajorMark$^+$, which partitions the message into multiple blocks to independently encode and deterministically decode each block, thereby further enhancing the quality of watermarked text and improving decoding accuracy. Extensive experiments on state-of-the-art LLMs demonstrate that our methods significantly enhance both decoding accuracy and text generation quality, outperforming prior multi-bit watermarking baselines.
comment: Preprint
☆ MegaWika 2: A More Comprehensive Multilingual Collection of Articles and their Sources
We introduce MegaWika 2, a large, multilingual dataset of Wikipedia articles with their citations and scraped web sources; articles are represented in a rich data structure, and scraped source texts are stored inline with precise character offsets of their citations in the article text. MegaWika 2 is a major upgrade from the original MegaWika, spanning six times as many articles and twice as many fully scraped citations. Both MegaWika and MegaWika 2 support report generation research ; whereas MegaWika also focused on supporting question answering and retrieval applications, MegaWika 2 is designed to support fact checking and analyses across time and language.
☆ AttnTrace: Attention-based Context Traceback for Long-Context LLMs
Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a context--often consisting of texts retrieved from a knowledge database or memory--and generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose AttnTrace, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of AttnTrace, and we provide theoretical insights for our design choice. We also perform a systematic evaluation for AttnTrace. The results demonstrate that AttnTrace is more accurate and efficient than existing state-of-the-art context traceback methods. We also show that AttnTrace can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that AttnTrace can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews. The code is at https://github.com/Wang-Yanting/AttnTrace.
comment: The code is available at https://github.com/Wang-Yanting/AttnTrace. The demo is available at https://huggingface.co/spaces/SecureLLMSys/AttnTrace
♻ ☆ ProRefine: Inference-Time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across nearly all fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
♻ ☆ Think Outside the Data: Colonial Biases and Systemic Issues in Automated Moderation Pipelines for Low-Resource Languages
Most social media users come from the Global South, where harmful content usually appears in local languages. Yet, AI-driven moderation systems struggle with low-resource languages spoken in these regions. Through semi-structured interviews with 22 AI experts working on harmful content detection in four low-resource languages: Tamil (South Asia), Swahili (East Africa), Maghrebi Arabic (North Africa), and Quechua (South America)--we examine systemic issues in building automated moderation tools for these languages. Our findings reveal that beyond data scarcity, socio-political factors such as tech companies' monopoly on user data and lack of investment in moderation for low-profit Global South markets exacerbate historic inequities. Even if more data were available, the English-centric and data-intensive design of language models and preprocessing techniques overlooks the need to design for morphologically complex, linguistically diverse, and code-mixed languages. We argue these limitations are not just technical gaps caused by "data scarcity" but reflect structural inequities, rooted in colonial suppression of non-Western languages. We discuss multi-stakeholder approaches to strengthen local research capacity, democratize data access, and support language-aware solutions to improve automated moderation for low-resource languages.
comment: Accepted to AIES 2025
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address for distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography
♻ ☆ Why do LLMs attend to the first token?
Large Language Models (LLMs) tend to attend heavily to the first token in the sequence -- creating a so-called attention sink. Many works have studied this phenomenon in detail, proposing various ways to either leverage or alleviate it. Attention sinks have been connected to quantisation difficulties, security issues, and streaming attention. Yet, while many works have provided conditions in which they occur or not, a critical question remains shallowly answered: Why do LLMs learn such patterns and how are they being used? In this work, we argue theoretically and empirically that this mechanism provides a method for LLMs to avoid over-mixing, connecting this to existing lines of work that study mathematically how information propagates in Transformers. We conduct experiments to validate our theoretical intuitions and show how choices such as context length, depth, and data packing influence the sink behaviour. We hope that this study provides a new practical perspective on why attention sinks are useful in LLMs, leading to a better understanding of the attention patterns that form during training.
♻ ☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint, Paper list is available at https://github.com/LightChen233/Awesome-AI4Research
♻ ☆ Can Performant LLMs Be Ethical? Quantifying the Impact of Web Crawling Opt-Outs
The increasing adoption of web crawling opt-outs by copyright holders of online content raises critical questions about the impact of data compliance on large language model (LLM) performance. However, little is known about how these restrictions (and the resultant filtering of pretraining datasets) affect the capabilities of models trained using these corpora. In this work, we conceptualize this effect as the $\textit{data compliance gap}$ (DCG), which quantifies the performance difference between models trained on datasets that comply with web crawling opt-outs, and those that do not. We measure the data compliance gap in two settings: pretraining models from scratch and continual pretraining from existing compliant models (simulating a setting where copyrighted data could be integrated later in pretraining). Our experiments with 1.5B models show that, as of January 2025, compliance with web data opt-outs does not degrade general knowledge acquisition (close to 0\% DCG). However, in specialized domains such as biomedical research, excluding major publishers leads to performance declines. These findings suggest that while general-purpose LLMs can be trained to perform equally well using fully open data, performance in specialized domains may benefit from access to high-quality copyrighted sources later in training. Our study provides empirical insights into the long-debated trade-off between data compliance and downstream model performance, informing future discussions on AI training practices and policy decisions. Our website is available at https://data-compliance.github.io/.
comment: COLM 2025 Camera Ready version
♻ ☆ Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis
Recent zero-shot text-to-speech (TTS) systems face a common dilemma: autoregressive (AR) models suffer from slow generation and lack duration controllability, while non-autoregressive (NAR) models lack temporal modeling and typically require complex designs. In this paper, we introduce a novel pseudo-autoregressive (PAR) codec language modeling approach that unifies AR and NAR modeling. Combining explicit temporal modeling from AR with parallel generation from NAR, PAR generates dynamic-length spans at fixed time steps. Building on PAR, we propose PALLE, a two-stage TTS system that leverages PAR for initial generation followed by NAR refinement. In the first stage, PAR progressively generates speech tokens along the time dimension, with each step predicting all positions in parallel but only retaining the left-most span. In the second stage, low-confidence tokens are iteratively refined in parallel, leveraging the global contextual information. Experiments demonstrate that PALLE, trained on LibriTTS, outperforms state-of-the-art systems trained on large-scale data, including F5-TTS, E2-TTS, and MaskGCT, on the LibriSpeech test-clean set in terms of speech quality, speaker similarity, and intelligibility, while achieving up to ten times faster inference speed. Audio samples are available at https://microsoft.com/research/project/vall-e-x/palle.
comment: Accepted in ACMMM 2025
♻ ☆ AdaMCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Multilingual Chain-of-Thought
Large language models (LLMs) have shown impressive multilingual capabilities through pretraining on diverse corpora. Although these models show strong reasoning abilities, their performance varies significantly between languages due to the imbalanced distribution of training data. Existing approaches using sample-level translation for extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaMCOT (Adaptive Multilingual Chain-of-Thought), a framework that enhances multilingual factual reasoning by dynamically routing thought processes in intermediary "thinking languages" before generating target-language responses. AdaMCOT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. An in-depth analysis of the model's hidden states and semantic space further elucidates the underlying mechanism of our method. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 33 pages
♻ ☆ Principled Foundations for Preference Optimization
In this paper, we show that direct preference optimization (DPO) is a very specific form of a connection between two major theories in the ML context of learning from preferences: loss functions (Savage) and stochastic choice (Doignon-Falmagne and Machina). The connection is established for all of Savage's losses and at this level of generality, (i) it includes support for abstention on the choice theory side, (ii) it includes support for non-convex objectives on the ML side, and (iii) it allows to frame for free some notable extensions of the DPO setting, including margins and corrections for length. Getting to understand how DPO operates from a general principled perspective is crucial because of the huge and diverse application landscape of models, because of the current momentum around DPO, but also -- and importantly -- because many state of the art variations on DPO definitely occupy a small region of the map that we cover. It also helps to understand the pitfalls of departing from this map, and figure out workarounds.
♻ ☆ Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``$m$-out-of-$n$ multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
♻ ☆ Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions
Traditional knowledge graph completion (KGC) methods rely solely on structural information, struggling with the inherent sparsity of knowledge graphs (KGs). By contrast, Large Language Models (LLMs) encapsulate extensive world knowledge and exhibit powerful context modeling capabilities, making them promising for mitigating the limitations of traditional methods. However, direct fine-tuning of LLMs for KGC, though effective, imposes substantial computational and memory overheads, while utilizing non-fine-tuned LLMs is efficient but yields suboptimal performance. In this work, we propose a novel framework that synergizes the strengths of LLMs with robust knowledge representation to enable effective and efficient KGC. We extract the context-aware hidden states of knowledge triples from the intermediate layers of LLMs, thereby capturing rich semantic and relational nuances. These representations are then utilized to train a data-efficient classifier tailored specifically for KGC tasks. To bridge the semantic gaps between LLMs and KGs, we employ subgraph sampling on KGs to generate model-friendly entity descriptions. We further adopt sliced mutual information (SMI) as a principled metric to quantify the task-specific information encoded in these representations. Extensive experiments on standard benchmarks validate the efficiency and effectiveness of our approach. We achieve a 47\% relative improvement over previous methods based on non-fine-tuned LLMs and, to our knowledge, are the first to achieve classification performance comparable to fine-tuned LLMs while enhancing GPU memory efficiency by $188\times$ and accelerating training and inference by $26.11\times$.
♻ ☆ Out-of-Context Relational Reasoning in Large Language Models
Binary relations, such as equality, are basic mathematical concepts that appear, implicitly or explicitly, in most benchmarks for Large Language Models (LLM). A recent trend in the literature is benchmarking LLMs on out-of-context learning, where the data is not presented in the prompt, but only during the model's training. However, existing works mostly focus on higher-order tasks, making it hard to interpret success or failure. In this work, we study how well can LLMs reason out-of-context on binary relations by only learning the representations of newly introduced tokens. Our experiments focus on equality ($=$), inequality ($<$), and inclusion ($\subset$) and the properties they satisfy, such as reflexivity, symmetry, transitivity, and logical complexity (e.g., the number of reasoning "hops"). We show that LLMs achieve better than random accuracy, but are still far from perfect, even on relatively simple reasoning tasks involving binary relations. We analyse the learned representations and show that LLMs encode useful information directly, arranging the embeddings according to the task.
♻ ☆ Talking to DINO: Bridging Self-Supervised Vision Backbones with Language for Open-Vocabulary Segmentation
Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form textual concepts without predefined training classes. While existing vision-language models such as CLIP can generate segmentation masks by leveraging coarse spatial information from Vision Transformers, they face challenges in spatial localization due to their global alignment of image and text features. Conversely, self-supervised visual models like DINO excel in fine-grained visual encoding but lack integration with language. To bridge this gap, we present Talk2DINO, a novel hybrid approach that combines the spatial accuracy of DINOv2 with the language understanding of CLIP. Our approach aligns the textual embeddings of CLIP to the patch-level features of DINOv2 through a learned mapping function without the need to fine-tune the underlying backbones. At training time, we exploit the attention maps of DINOv2 to selectively align local visual patches with textual embeddings. We show that the powerful semantic and localization abilities of Talk2DINO can enhance the segmentation process, resulting in more natural and less noisy segmentations, and that our approach can also effectively distinguish foreground objects from the background. Experimental results demonstrate that Talk2DINO achieves state-of-the-art performance across several unsupervised OVS benchmarks. Source code and models are publicly available at: https://lorebianchi98.github.io/Talk2DINO/.
♻ ☆ WSI-LLaVA: A Multimodal Large Language Model for Whole Slide Image ICCV 2025
Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.
comment: ICCV 2025, 38 pages, 22 figures, 35 tables
♻ ☆ BriLLM: Brain-inspired Large Language Model
We introduce BriLLM, a brain-inspired large language model that redefines the foundations of generative language modeling. Departing from Transformer architectures, GPT frameworks, and traditional input-output constrained paradigms, BriLLM is built on the Signal Fully-connected flowing (SiFu) mechanism - a directed graph-based neural network design that enables full interpretability across all nodes, in contrast to conventional models limited to input-output interpretability. In this framework, tokens are represented as graph nodes, with signal flows - either randomly initialized or user-defined - propagating along paths following a "least resistance" principle. The next token to be generated emerges as the target of this signal flow. Theoretically, BriLLM supports infinitely long n-gram modeling, with model size decoupled from input and prediction length. Its signal propagation dynamics mimic human-like cognitive patterns, enabling recall activation and inherent multi-modal compatibility. We release initial Chinese and English BriLLM versions (4000 tokens, 32-dimensional nodes, 32-token sequence prediction capacity) with sizes ~2B and ~1B parameters, respectively, achieving performance comparable to GPT-1.
♻ ☆ Ensemble Learning for Large Language Models in Text and Code Generation: A Survey
Generative Pretrained Transformers (GPTs) are foundational Large Language Models (LLMs) for text generation. However, individual LLMs often produce inconsistent outputs and exhibit biases, limiting their representation of diverse language patterns. The closed-source nature of many powerful LLMs further restricts industry applications due to data privacy concerns. Inspired by successes in text generation, LLM ensemble techniques are now increasingly explored for code generation. This article reviews these emerging ensemble approaches to enhance understanding, encourage further research, and promote practical implementation in both text and code generation. We categorize LLM ensembles into seven main methods - weight merging, knowledge fusion, mixture-of-experts, reward ensemble, output ensemble, routing, and cascading - analyzing capabilities of those approaches. Our findings highlight key benefits such as improved diversity representation, enhanced output quality, and greater application flexibility. These insights aid model selection for real-world tasks and crucially, lay groundwork for extending ensemble strategies to multimodal LLMs.
comment: Under review by IEEE TAI
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems ACM MM 2025
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit/blob/main/examples/ADSEdit.md.
comment: ACM MM 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both abstract textual descriptions and freehand sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Context-Independent Imperative Paradigm (CIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity
We present SMART-Editor, a framework for compositional layout and content editing across structured (posters, websites) and unstructured (natural images) domains. Unlike prior models that perform local edits, SMART-Editor preserves global coherence through two strategies: Reward-Refine, an inference-time rewardguided refinement method, and RewardDPO, a training-time preference optimization approach using reward-aligned layout pairs. To evaluate model performance, we introduce SMARTEdit-Bench, a benchmark covering multi-domain, cascading edit scenarios. SMART-Editor outperforms strong baselines like InstructPix2Pix and HIVE, with RewardDPO achieving up to 15% gains in structured settings and Reward-Refine showing advantages on natural images. Automatic and human evaluations confirm the value of reward-guided planning in producing semantically consistent and visually aligned edits.
comment: This requires some internal approval before the public release
♻ ☆ Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
♻ ☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in eight languages (Mandarin, Hindi, Arabic, German, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
♻ ☆ From Text to Trajectory: Exploring Complex Constraint Representation and Decomposition in Safe Reinforcement Learning NeurIPS 2024
Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.
comment: Accepted by NeurIPS 2024
♻ ☆ Dynaword: From One-shot to Continuously Developed Datasets
Large-scale datasets are foundational for research and development in natural language processing. However, current approaches face three key challenges: (1) reliance on ambiguously licensed sources restricting use, sharing, and derivative works; (2) static dataset releases that prevent community contributions and diminish longevity; and (3) quality assurance processes restricted to publishing teams rather than leveraging community expertise. To address these limitations, we introduce two contributions: the Dynaword approach and Danish Dynaword. The Dynaword approach is a framework for creating large-scale, open datasets that can be continuously updated through community collaboration. Danish Dynaword is a concrete implementation that validates this approach and demonstrates its potential. Danish Dynaword contains over four times as many tokens as comparable releases, is exclusively openly licensed, and has received multiple contributions across industry and research. The repository includes light-weight tests to ensure data formatting, quality, and documentation, establishing a sustainable framework for ongoing community contributions and dataset evolution.
♻ ☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
♻ ☆ ReaGAN: Node-as-Agent-Reasoning Graph Agentic Network
Graph Neural Networks (GNNs) have achieved remarkable success in graph-based learning by propagating information among neighbor nodes via predefined aggregation mechanisms. However, such fixed schemes often suffer from two key limitations. First, they cannot handle the imbalance in node informativeness -- some nodes are rich in information, while others remain sparse. Second, predefined message passing primarily leverages local structural similarity while ignoring global semantic relationships across the graph, limiting the model's ability to capture distant but relevant information. We propose Retrieval-augmented Graph Agentic Network (ReaGAN), an agent-based framework that empowers each node with autonomous, node-level decision-making. Each node acts as an agent that independently plans its next action based on its internal memory, enabling node-level planning and adaptive message propagation. Additionally, retrieval-augmented generation (RAG) allows nodes to access semantically relevant content and build global relationships in the graph. ReaGAN achieves competitive performance under few-shot in-context settings using a frozen LLM backbone without fine-tuning, showcasing the potential of agentic planning and local-global retrieval in graph learning.
comment: 17 pages, work in progress
♻ ☆ SpeechRole: A Large-Scale Dataset and Benchmark for Evaluating Speech Role-Playing Agents
Recently, role-playing agents have emerged as a promising paradigm for achieving personalized interaction and emotional resonance. Existing research primarily focuses on the textual modality, neglecting the critical dimension of speech in realistic interactive scenarios. In particular, there is a lack of systematic evaluation for Speech Role-Playing Agents (SRPAs). To address this gap, we construct SpeechRole-Data, a large-scale, high-quality dataset that comprises 98 diverse roles and 112k speech-based single-turn and multi-turn conversations. Each role demonstrates distinct vocal characteristics, including timbre and prosody, thereby enabling more sophisticated speech role-playing. Furthermore, we propose SpeechRole-Eval, a multidimensional evaluation benchmark that systematically assesses SRPAs performance in key aspects such as fundamental interaction ability, speech expressiveness, and role-playing fidelity. Experimental results reveal the advantages and challenges of both cascaded and end-to-end speech role-playing agents in maintaining vocal style consistency and role coherence. We release all data, code, and baseline models to provide a solid foundation for speech-driven multimodal role-playing research and to foster further developments in this field.
comment: We request withdrawal of this paper due to an error in the experimental results reported in Table 2 on page 8. Specifically, the results for the Qwen2.5-Omni model are incorrect. We are currently conducting further verification and plan to resubmit with corrected results
♻ ☆ What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation. However, challenges remain in achieving effective cross-modal alignment and high-quality speech generation. In this work, we systematically investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling. We compare coupled, semi-decoupled, and fully decoupled speech tokenizers under a fair SLM framework and find that decoupled tokenization significantly improves alignment and synthesis quality. To address the information density mismatch between speech and text, we introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens. This leads to up to 12$\times$ faster decoding and a substantial drop in word error rate (from 6.07 to 3.01). Furthermore, we propose a speaker-aware generation paradigm and introduce RoleTriviaQA, a large-scale role-playing knowledge QA benchmark with diverse speaker identities. Experiments demonstrate that our methods enhance both knowledge understanding and speaker consistency.
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ ConfGuard: A Simple and Effective Backdoor Detection for Large Language Models
Backdoor attacks pose a significant threat to Large Language Models (LLMs), where adversaries can embed hidden triggers to manipulate LLM's outputs. Most existing defense methods, primarily designed for classification tasks, are ineffective against the autoregressive nature and vast output space of LLMs, thereby suffering from poor performance and high latency. To address these limitations, we investigate the behavioral discrepancies between benign and backdoored LLMs in output space. We identify a critical phenomenon which we term sequence lock: a backdoored model generates the target sequence with abnormally high and consistent confidence compared to benign generation. Building on this insight, we propose ConfGuard, a lightweight and effective detection method that monitors a sliding window of token confidences to identify sequence lock. Extensive experiments demonstrate ConfGuard achieves a near 100\% true positive rate (TPR) and a negligible false positive rate (FPR) in the vast majority of cases. Crucially, the ConfGuard enables real-time detection almost without additional latency, making it a practical backdoor defense for real-world LLM deployments.
comment: Under review
♻ ☆ Memorization in Fine-Tuned Large Language Models
This study investigates the mechanisms and factors influencing memorization in fine-tuned large language models (LLMs), with a focus on the medical domain due to its privacy-sensitive nature. We examine how different aspects of the fine-tuning process affect a model's propensity to memorize training data, using the PHEE dataset of pharmacovigilance events. Our research employs two main approaches: a membership inference attack to detect memorized data, and a generation task with prompted prefixes to assess verbatim reproduction. We analyze the impact of adapting different weight matrices in the transformer architecture, the relationship between perplexity and memorization, and the effect of increasing the rank in low-rank adaptation (LoRA) fine-tuning. Key findings include: (1) Value and Output matrices contribute more significantly to memorization compared to Query and Key matrices; (2) Lower perplexity in the fine-tuned model correlates with increased memorization; (3) Higher LoRA ranks lead to increased memorization, but with diminishing returns at higher ranks. These results provide insights into the trade-offs between model performance and privacy risks in fine-tuned LLMs. Our findings have implications for developing more effective and responsible strategies for adapting large language models while managing data privacy concerns.
♻ ☆ M2S: Multi-turn to Single-turn jailbreak in Red Teaming for LLMs ACL 2025
We introduce a novel framework for consolidating multi-turn adversarial ``jailbreak'' prompts into single-turn queries, significantly reducing the manual overhead required for adversarial testing of large language models (LLMs). While multi-turn human jailbreaks have been shown to yield high attack success rates, they demand considerable human effort and time. Our multi-turn-to-single-turn (M2S) methods -- Hyphenize, Numberize, and Pythonize -- systematically reformat multi-turn dialogues into structured single-turn prompts. Despite removing iterative back-and-forth interactions, these prompts preserve and often enhance adversarial potency: in extensive evaluations on the Multi-turn Human Jailbreak (MHJ) dataset, M2S methods achieve attack success rates from 70.6 percent to 95.9 percent across several state-of-the-art LLMs. Remarkably, the single-turn prompts outperform the original multi-turn attacks by as much as 17.5 percentage points while cutting token usage by more than half on average. Further analysis shows that embedding malicious requests in enumerated or code-like structures exploits ``contextual blindness'', bypassing both native guardrails and external input-output filters. By converting multi-turn conversations into concise single-turn prompts, the M2S framework provides a scalable tool for large-scale red teaming and reveals critical weaknesses in contemporary LLM defenses.
comment: Accepted to ACL 2025 (Main Track). Camera-ready version
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.
comment: code available at https://github.com/liunian-Jay/CoCoA
♻ ☆ Listening to the Unspoken: Exploring "365" Aspects of Multimodal Interview Performance Assessment ACM MM 2025
Interview performance assessment is essential for determining candidates' suitability for professional positions. To ensure holistic and fair evaluations, we propose a novel and comprehensive framework that explores ``365'' aspects of interview performance by integrating \textit{three} modalities (video, audio, and text), \textit{six} responses per candidate, and \textit{five} key evaluation dimensions. The framework employs modality-specific feature extractors to encode heterogeneous data streams and subsequently fused via a Shared Compression Multilayer Perceptron. This module compresses multimodal embeddings into a unified latent space, facilitating efficient feature interaction. To enhance prediction robustness, we incorporate a two-level ensemble learning strategy: (1) independent regression heads predict scores for each response, and (2) predictions are aggregated across responses using a mean-pooling mechanism to produce final scores for the five target dimensions. By listening to the unspoken, our approach captures both explicit and implicit cues from multimodal data, enabling comprehensive and unbiased assessments. Achieving a multi-dimensional average MSE of 0.1824, our framework secured first place in the AVI Challenge 2025, demonstrating its effectiveness and robustness in advancing automated and multimodal interview performance assessment. The full implementation is available at https://github.com/MSA-LMC/365Aspects.
comment: 8 pages, 4 figures, ACM MM 2025. github:https://github.com/MSA-LMC/365Aspects
♻ ☆ MemOS: A Memory OS for AI System
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI), yet their lack of well-defined memory management systems hinders the development of long-context reasoning, continual personalization, and knowledge consistency.Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.While Retrieval-Augmented Generation (RAG) introduces external knowledge in plain text, it remains a stateless workaround without lifecycle control or integration with persistent representations.Recent work has modeled the training and inference cost of LLMs from a memory hierarchy perspective, showing that introducing an explicit memory layer between parameter memory and external retrieval can substantially reduce these costs by externalizing specific knowledge. Beyond computational efficiency, LLMs face broader challenges arising from how information is distributed over time and context, requiring systems capable of managing heterogeneous knowledge spanning different temporal scales and sources. To address this challenge, we propose MemOS, a memory operating system that treats memory as a manageable system resource. It unifies the representation, scheduling, and evolution of plaintext, activation-based, and parameter-level memories, enabling cost-efficient storage and retrieval. As the basic unit, a MemCube encapsulates both memory content and metadata such as provenance and versioning. MemCubes can be composed, migrated, and fused over time, enabling flexible transitions between memory types and bridging retrieval with parameter-based learning. MemOS establishes a memory-centric system framework that brings controllability, plasticity, and evolvability to LLMs, laying the foundation for continual learning and personalized modeling.
comment: 36 pages, 10 figures, 5 tables
♻ ☆ BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimization and Diffusion Modeling ICML 2025
Time-series Generation (TSG) is a prominent research area with broad applications in simulations, data augmentation, and counterfactual analysis. While existing methods have shown promise in unconditional single-domain TSG, real-world applications demand for cross-domain approaches capable of controlled generation tailored to domain-specific constraints and instance-level requirements. In this paper, we argue that text can provide semantic insights, domain information and instance-specific temporal patterns, to guide and improve TSG. We introduce ``Text-Controlled TSG'', a task focused on generating realistic time series by incorporating textual descriptions. To address data scarcity in this setting, we propose a novel LLM-based Multi-Agent framework that synthesizes diverse, realistic text-to-TS datasets. Furthermore, we introduce BRIDGE, a hybrid text-controlled TSG framework that integrates semantic prototypes with text description for supporting domain-level guidance. This approach achieves state-of-the-art generation fidelity on 11 of 12 datasets, and improves controllability by up to 12% on MSE and 6% MAE compared to no text input generation, highlighting its potential for generating tailored time-series data.
comment: ICML 2025 Main Conference
♻ ☆ The Multi-Round Diagnostic RAG Framework for Emulating Clinical Reasoning
In recent years, accurately and quickly deploying medical large language models (LLMs) has become a trend. Among these, retrieval-augmented generation (RAG) has garnered attention due to rapid deployment and privacy protection. However, the challenge hinder the practical deployment of RAG for medical diagnosis: the semantic gap between colloquial patient descriptions and the professional terminology within medical knowledge bases. We try to address the challenge from the data perspective and the method perspective. First, to address the semantic gap in existing knowledge bases, we construct DiagnosGraph, a generalist knowledge graph covering both modern medicine and Traditional Chinese Medicine. It contains 876 common diseases with the graph of 7,997 nodes and 37,201 triples. To bridge the gap between colloquial patient narratives and academic medical knowledge, DiagnosGraph also introduces $1,908$ medical record by formalizing the patient chief complaint and proposing a medical diagnosis. Second, we introduce the Multi-Round Diagnostic RAG (MRD-RAG) framework. It utilizes a multi-round dialogue to refine diagnostic possibilities, emulating the clinical reasoning of a physician. Experiments conducted on four medical benchmarks, with evaluations by human physicians, demonstrate that MRD-RAG enhances the diagnostic performance of LLMs, highlighting its potential to make automated diagnosis more accurate and human-aligned.
♻ ☆ BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation ACL 2025
Current EEG/MEG-to-text decoding systems suffer from three key limitations: (1) reliance on teacher-forcing methods, which compromises robustness during inference, (2) sensitivity to session-specific noise, hindering generalization across subjects, and (3) misalignment between brain signals and linguistic representations due to pre-trained language model over-dominance. To overcome these challenges, we propose BrainECHO (Brain signal decoding via vEctor-quantized speCtrogram reconstruction for WHisper-enhanced text generatiOn), a multi-stage framework that employs decoupled representation learning to achieve state-of-the-art performance on both EEG and MEG datasets. Specifically, BrainECHO consists of three stages: (1) Discrete autoencoding, which transforms continuous Mel spectrograms into a finite set of high-quality discrete representations for subsequent stages. (2) Frozen alignment, where brain signal embeddings are mapped to corresponding Mel spectrogram embeddings in a frozen latent space, effectively filtering session-specific noise through vector-quantized reconstruction, yielding a 3.65% improvement in BLEU-4 score. (3) Constrained decoding fine-tuning, which leverages the pre-trained Whisper model for audio-to-text translation, balancing signal adaptation with knowledge preservation, and achieving 74%-89% decoding BLEU scores without excessive reliance on teacher forcing. BrainECHO demonstrates robustness across sentence, session, and subject-independent conditions, passing Gaussian noise tests and showcasing its potential for enhancing language-based brain-computer interfaces.
comment: 8 pages (excluding references), accepted by Findings of ACL 2025
♻ ☆ CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
Automatic generation of radiology reports has the potential to alleviate radiologists' significant workload, yet current methods struggle to deliver clinically reliable conclusions. In particular, most prior approaches focus on producing fluent text without effectively ensuring the factual correctness of the reports and often rely on single-view images, limiting diagnostic comprehensiveness. We propose CLARIFID, a novel framework that directly optimizes diagnostic correctness by mirroring the two-step workflow of experts. Specifically, CLARIFID (1) learns the logical flow from Findings to Impression through section-aware pretraining, (2) is fine-tuned with Proximal Policy Optimization in which the CheXbert F1 score of the Impression section serves as the reward, (3) enforces reasoning-aware decoding that completes "Findings" before synthesizing the "Impression", and (4) fuses multiple chest X-ray views via a vision-transformer-based multi-view encoder. During inference, we apply a reasoning-aware next-token forcing strategy followed by report-level re-ranking, ensuring that the model first produces a comprehensive Findings section before synthesizing the Impression and thereby preserving coherent clinical reasoning. Experimental results on the MIMIC-CXR dataset demonstrate that our method achieves superior clinical efficacy and outperforms existing baselines on both standard NLG metrics and clinically aware scores.
♻ ☆ Hidden in the Noise: Unveiling Backdoors in Audio LLMs Alignment through Latent Acoustic Pattern Triggers
As Audio Large Language Models (ALLMs) emerge as powerful tools for speech processing, their safety implications demand urgent attention. While considerable research has explored textual and vision safety, audio's distinct characteristics present significant challenges. This paper first investigates: Is ALLM vulnerable to backdoor attacks exploiting acoustic triggers? In response to this issue, we introduce Hidden in the Noise (HIN), a novel backdoor attack framework designed to exploit subtle, audio-specific features. HIN applies acoustic modifications to raw audio waveforms, such as alterations to temporal dynamics and strategic injection of spectrally tailored noise. These changes introduce consistent patterns that an ALLM's acoustic feature encoder captures, embedding robust triggers within the audio stream. To evaluate ALLM robustness against audio-feature-based triggers, we develop the AudioSafe benchmark, assessing nine distinct risk types. Extensive experiments on AudioSafe and three established safety datasets reveal critical vulnerabilities in existing ALLMs: (I) audio features like environment noise and speech rate variations achieve over 90% average attack success rate. (II) ALLMs exhibit significant sensitivity differences across acoustic features, particularly showing minimal response to volume as a trigger, and (III) poisoned sample inclusion causes only marginal loss curve fluctuations, highlighting the attack's stealth.
♻ ☆ RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation
Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines.
♻ ☆ When Truth Is Overridden: Uncovering the Internal Origins of Sycophancy in Large Language Models
Large Language Models (LLMs) often exhibit sycophantic behavior, agreeing with user-stated opinions even when those contradict factual knowledge. While prior work has documented this tendency, the internal mechanisms that enable such behavior remain poorly understood. In this paper, we provide a mechanistic account of how sycophancy arises within LLMs. We first systematically study how user opinions induce sycophancy across different model families. We find that simple opinion statements reliably induce sycophancy, whereas user expertise framing has a negligible impact. Through logit-lens analysis and causal activation patching, we identify a two-stage emergence of sycophancy: (1) a late-layer output preference shift and (2) deeper representational divergence. We also verify that user authority fails to influence behavior because models do not encode it internally. In addition, we examine how grammatical perspective affects sycophantic behavior, finding that first-person prompts (``I believe...'') consistently induce higher sycophancy rates than third-person framings (``They believe...'') by creating stronger representational perturbations in deeper layers. These findings highlight that sycophancy is not a surface-level artifact but emerges from a structural override of learned knowledge in deeper layers, with implications for alignment and truthful AI systems.
♻ ☆ STRUCTSENSE: A Task-Agnostic Agentic Framework for Structured Information Extraction with Human-In-The-Loop Evaluation and Benchmarking
The ability to extract structured information from unstructured sources-such as free-text documents and scientific literature-is critical for accelerating scientific discovery and knowledge synthesis. Large Language Models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks, including structured information extraction. However, their effectiveness often diminishes in specialized, domain-specific contexts that require nuanced understanding and expert-level domain knowledge. In addition, existing LLM-based approaches frequently exhibit poor transferability across tasks and domains, limiting their scalability and adaptability. To address these challenges, we introduce StructSense, a modular, task-agnostic, open-source framework for structured information extraction built on LLMs. StructSense is guided by domain-specific symbolic knowledge encoded in ontologies, enabling it to navigate complex domain content more effectively. It further incorporates agentic capabilities through self-evaluative judges that form a feedback loop for iterative refinement, and includes human-in-the-loop mechanisms to ensure quality and validation. We demonstrate that StructSense can overcome both the limitations of domain sensitivity and the lack of cross-task generalizability, as shown through its application to diverse neuroscience information extraction tasks.
comment: -
♻ ☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. We present VeOmni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. VeOmni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. VeOmni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. Using VeOmni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
♻ ☆ Post-Completion Learning for Language Models
Current language model training paradigms typically terminate learning upon reaching the end-of-sequence () token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
♻ ☆ Filtering with Self-Attention and Storing with MLP: One-Layer Transformers Can Provably Acquire and Extract Knowledge
Modern large language models excel in knowledge-intensive tasks, yet how transformers acquire (store) knowledge during pre-training and extract (retrieve) it during post-fine-tuning inference remains theoretically opaque. While prior theoretical work has begun to investigate these questions through the analysis of training dynamics, such studies are limited to single-layer, attention-only architectures. However, most existing studies suggest that MLPs are the most contributing components for storing knowledge in transformer-based language models. Meanwhile, our empirical investigations reveal that such simplified models, when trained using standard next-token prediction objectives, may be incapable of acquiring or extracting factual knowledge. To overcome this limitation, we introduce a tractable one-layer transformer framework that crucially incorporates both self-attention and MLP modules. By tracking its gradient dynamics, we establish convergence and generalization guarantees that illuminate the ability of knowledge acquisition and extraction. We prove that 1) Transformers can achieve near-optimal training loss during pre-training, signifying effective knowledge acquisition; 2) With a large fine-tuning dataset and specific data multiplicity conditions met, transformers can achieve low generalization error when tested on factual knowledge learned during pre-training but not reinforced during the fine-tuning, indicating successful knowledge extraction; 3) When the conditions are not satisfied, transformers exhibit high generalization loss, resulting in hallucinations. Our analysis includes both full fine-tuning and low-rank fine-tuning. Furthermore, our analysis offers theoretical insights into several pertinent empirical phenomena, such as the role of learning rate schedules. Experiments on synthetic and real-world PopQA datasets with GPT-2 and Llama-3.2-1B validate our results.
♻ ☆ CutPaste&Find: Efficient Multimodal Hallucination Detector with Visual-aid Knowledge Base
Large Vision-Language Models (LVLMs) have demonstrated impressive multimodal reasoning capabilities, but they remain susceptible to hallucination, particularly object hallucination where non-existent objects or incorrect attributes are fabricated in generated descriptions. Existing detection methods achieve strong performance but rely heavily on expensive API calls and iterative LVLM-based validation, making them impractical for large-scale or offline use. To address these limitations, we propose CutPaste\&Find, a lightweight and training-free framework for detecting hallucinations in LVLM-generated outputs. Our approach leverages off-the-shelf visual and linguistic modules to perform multi-step verification efficiently without requiring LVLM inference. At the core of our framework is a Visual-aid Knowledge Base that encodes rich entity-attribute relationships and associated image representations. We introduce a scaling factor to refine similarity scores, mitigating the issue of suboptimal alignment values even for ground-truth image-text pairs. Comprehensive evaluations on benchmark datasets, including POPE and R-Bench, demonstrate that CutPaste\&Find achieves competitive hallucination detection performance while being significantly more efficient and cost-effective than previous methods.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) reasoning enhances the problem-solving capabilities of large language models by encouraging step-by-step intermediate reasoning during inference. While effective, CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences. Existing acceleration strategies either reduce sequence length through early stopping or compressive reward designs, or improve decoding speed via speculative decoding with smaller models. However, speculative decoding suffers from limited speedup when the agreement between small and large models is low, and fails to exploit the potential advantages of small models in producing concise intermediate reasoning. In this paper, we present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference by switching between a small language model (SLM) and a large language model (LLM) along the reasoning trajectory. R-Stitch uses the SLM to generate tokens by default and delegates to the LLM only when the SLM's confidence falls below a threshold. This design avoids full-sequence rollback and selectively invokes the LLM on uncertain steps, preserving both efficiency and answer quality. R-Stitch is model-agnostic, training-free, and compatible with standard decoding pipelines. Experiments on math reasoning benchmarks demonstrate that R-Stitch achieves up to 85\% reduction in inference latency with negligible accuracy drop, highlighting its practical effectiveness in accelerating CoT reasoning.
♻ ☆ Domain-Independent Automatic Generation of Descriptive Texts for Time-Series Data
Due to scarcity of time-series data annotated with descriptive texts, training a model to generate descriptive texts for time-series data is challenging. In this study, we propose a method to systematically generate domain-independent descriptive texts from time-series data. We identify two distinct approaches for creating pairs of time-series data and descriptive texts: the forward approach and the backward approach. By implementing the novel backward approach, we create the Temporal Automated Captions for Observations (TACO) dataset. Experimental results demonstrate that a contrastive learning based model trained using the TACO dataset is capable of generating descriptive texts for time-series data in novel domains.
♻ ☆ CLIPPER: Compression enables long-context synthetic data generation
LLM developers are increasingly reliant on synthetic data, but generating high-quality data for complex long-context reasoning tasks remains challenging. We introduce CLIPPER, a compression-based approach for generating synthetic data tailored to narrative claim verification - a task that requires reasoning over a book to verify a given claim. Instead of generating claims directly from the raw text of the book, which results in artifact-riddled claims, CLIPPER first compresses the book into chapter outlines and book summaries and then uses these intermediate representations to generate complex claims and corresponding chain-of-thoughts. Compared to naive approaches, CLIPPER produces claims that are more valid, grounded, and complex. Using CLIPPER, we construct a dataset of 19K synthetic book claims paired with their source texts and chain-of-thought reasoning, and use it to fine-tune three open-weight models. Our best model achieves breakthrough results on narrative claim verification (from 28% to 76% accuracy on our test set) and sets a new state-of-the-art for sub-10B models on the NoCha leaderboard. Further analysis shows that our models generate more detailed and grounded chain-of-thought reasoning while also improving performance on other narrative understanding tasks (e.g., NarrativeQA).
comment: Accepted to COLM 2025
♻ ☆ LaMPE: Length-aware Multi-grained Positional Encoding for Adaptive Long-context Scaling Without Training
Large language models (LLMs) experience significant performance degradation when the input exceeds the pretraining context window, primarily due to the out-of-distribution (OOD) behavior of Rotary Position Embedding (RoPE). Recent studies mitigate this problem by remapping OOD positions into the in-distribution range with fixed mapping strategies, ignoring the dynamic relationship between input length and the model's effective context window. To this end, we propose Length-aware Multi-grained Positional Encoding (LaMPE), a training-free method that fully utilizes the model's effective context window for adaptive long-context scaling in LLMs. Motivated by the left-skewed frequency distribution of relative positions, LaMPE establishes a dynamic relationship between mapping length and input length through a parametric scaled sigmoid function to adaptively allocate positional capacity across varying input lengths. Meanwhile, LaMPE devises a novel multi-grained attention mechanism that strategically allocates positional resolution across different sequence regions to capture both fine-grained locality and long-range dependencies. Our method can be seamlessly applied to a wide range of RoPE-based LLMs without training. Extensive experiments on three representative LLMs across five mainstream long-context benchmarks demonstrate that LaMPE achieves significant performance improvements compared to existing length extrapolation methods. The code will be released at https://github.com/scar-on/LaMPE.
comment: 13 pages, 9 figures
♻ ☆ Energy-Based Reward Models for Robust Language Model Alignment
Reward models (RMs) are essential for aligning Large Language Models (LLMs) with human preferences. However, they often struggle with capturing complex human preferences and generalizing to unseen data. To address these challenges, we introduce Energy-Based Reward Model (EBRM), a lightweight post-hoc refinement framework that enhances RM robustness and generalization. EBRM models the reward distribution explicitly, capturing uncertainty in human preferences and mitigating the impact of noisy or misaligned annotations. It achieves this through conflict-aware data filtering, label-noise-aware contrastive training, and hybrid initialization. Notably, EBRM enhances RMs without retraining, making it computationally efficient and adaptable across different models and tasks. Empirical evaluations on RM benchmarks demonstrate significant improvements in both robustness and generalization, achieving up to a 5.97% improvement in safety-critical alignment tasks compared to standard RMs. Furthermore, reinforcement learning experiments confirm that our refined rewards enhance alignment quality, effectively delaying reward hacking. These results demonstrate our approach as a scalable and effective enhancement for existing RMs and alignment pipelines. The code is available at EBRM.
comment: Accepted by COLM 2025
♻ ☆ A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...
comment: 72 pages, 6 figures. Accepted to TMLR, with Survey Certification award
♻ ☆ A Comprehensive Evaluation of Semantic Relation Knowledge of Pretrained Language Models and Humans
Recently, much work has concerned itself with the enigma of what exactly pretrained language models~(PLMs) learn about different aspects of language, and how they learn it. One stream of this type of research investigates the knowledge that PLMs have about semantic relations. However, many aspects of semantic relations were left unexplored. Generally, only one relation has been considered, namely hypernymy. Furthermore, previous work did not measure humans' performance on the same task as that performed by the PLMs. This means that at this point in time, there is only an incomplete view of the extent of these models' semantic relation knowledge. To address this gap, we introduce a comprehensive evaluation framework covering five relations beyond hypernymy, namely hyponymy, holonymy, meronymy, antonymy, and synonymy. We use five metrics (two newly introduced here) for recently untreated aspects of semantic relation knowledge, namely soundness, completeness, symmetry, prototypicality, and distinguishability. Using these, we can fairly compare humans and models on the same task. Our extensive experiments involve six PLMs, four masked and two causal language models. The results reveal a significant knowledge gap between humans and models for all semantic relations. In general, causal language models, despite their wide use, do not always perform significantly better than masked language models. Antonymy is the outlier relation where all models perform reasonably well. The evaluation materials can be found at https://github.com/hancules/ProbeResponses.
♻ ☆ The Impact of Item-Writing Flaws on Difficulty and Discrimination in Item Response Theory
High-quality test items are essential for educational assessments, particularly within Item Response Theory (IRT). Traditional validation methods rely on resource-intensive pilot testing to estimate item difficulty and discrimination. More recently, Item-Writing Flaw (IWF) rubrics emerged as a domain-general approach for evaluating test items based on textual features. This method offers a scalable, pre-deployment evaluation without requiring student data, but its predictive validity concerning empirical IRT parameters is underexplored. To address this gap, we conducted a study involving 7,126 multiple-choice questions across various STEM subjects (physical science, mathematics, and life/earth sciences). Using an automated approach, we annotated each question with a 19-criteria IWF rubric and studied relationships to data-driven IRT parameters. Our analysis revealed statistically significant links between the number of IWFs and IRT difficulty and discrimination parameters, particularly in life/earth and physical science domains. We further observed how specific IWF criteria can impact item quality more and less severely (e.g., negative wording vs. implausible distractors) and how they might make a question more or less challenging. Overall, our findings establish automated IWF analysis as a valuable supplement to traditional validation, providing an efficient method for initial item screening, particularly for flagging low-difficulty MCQs. Our findings show the need for further research on domain-general evaluation rubrics and algorithms that understand domain-specific content for robust item validation.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified "broadcasting" sentences that receive disproportionate attention from all future sentences via "receiver" attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their transformer architecture: encoder-only, decoder-only, and encoder-decoder LMs. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The repository is publicly available online at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/definitions.
♻ ☆ From Queries to Criteria: Understanding How Astronomers Evaluate LLMs
There is growing interest in leveraging LLMs to aid in astronomy and other scientific research, but benchmarks for LLM evaluation in general have not kept pace with the increasingly diverse ways that real people evaluate and use these models. In this study, we seek to improve evaluation procedures by building an understanding of how users evaluate LLMs. We focus on a particular use case: an LLM-powered retrieval-augmented generation bot for engaging with astronomical literature, which we deployed via Slack. Our inductive coding of 368 queries to the bot over four weeks and our follow-up interviews with 11 astronomers reveal how humans evaluated this system, including the types of questions asked and the criteria for judging responses. We synthesize our findings into concrete recommendations for building better benchmarks, which we then employ in constructing a sample benchmark for evaluating LLMs for astronomy. Overall, our work offers ways to improve LLM evaluation and ultimately usability, particularly for use in scientific research.
comment: Accepted to the Conference on Language Modeling 2025 (COLM), 22 pages, 6 figures
♻ ☆ I Have Covered All the Bases Here: Interpreting Reasoning Features in Large Language Models via Sparse Autoencoders
Recent LLMs like DeepSeek-R1 have demonstrated state-of-the-art performance by integrating deep thinking and complex reasoning during generation. However, the internal mechanisms behind these reasoning processes remain unexplored. We observe reasoning LLMs consistently use vocabulary associated with human reasoning processes. We hypothesize these words correspond to specific reasoning moments within the models' internal mechanisms. To test this hypothesis, we employ Sparse Autoencoders (SAEs), a technique for sparse decomposition of neural network activations into human-interpretable features. We introduce ReasonScore, an automatic metric to identify active SAE features during these reasoning moments. We perform manual and automatic interpretation of the features detected by our metric, and find those with activation patterns matching uncertainty, exploratory thinking, and reflection. Through steering experiments, we demonstrate that amplifying these features increases performance on reasoning-intensive benchmarks (+2.2%) while producing longer reasoning traces (+20.5%). Using the model diffing technique, we provide evidence that these features are present only in models with reasoning capabilities. Our work provides the first step towards a mechanistic understanding of reasoning in LLMs. Code available at https://github.com/AIRI-Institute/SAE-Reasoning
♻ ☆ NameTag 3: A Tool and a Service for Multilingual/Multitagset NER ACL 2025
We introduce NameTag 3, an open-source tool and cloud-based web service for multilingual, multidataset, and multitagset named entity recognition (NER), supporting both flat and nested entities. NameTag 3 achieves state-of-the-art results on 21 test datasets in 15 languages and remains competitive on the rest, even against larger models. It is available as a command-line tool and as a cloud-based service, enabling use without local installation. NameTag 3 web service currently provides flat NER for 17 languages, trained on 21 corpora and three NE tagsets, all powered by a single 355M-parameter fine-tuned model; and nested NER for Czech, powered by a 126M fine-tuned model. The source code is licensed under open-source MPL 2.0, while the models are distributed under non-commercial CC BY-NC-SA 4.0. Documentation is available at https://ufal.mff.cuni.cz/nametag, source code at https://github.com/ufal/nametag3, and trained models via https://lindat.cz. The REST service and the web application can be found at https://lindat.mff.cuni.cz/services/nametag/. A demonstration video is available at https://www.youtube.com/watch?v=-gaGnP0IV8A.
comment: Accepted to ACL 2025
♻ ☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities to use search engines during inference is often suboptimal, as the LLM might not fully possess the capability on how to interact optimally with the search engine. This paper introduces Search-R1, an extension of reinforcement learning (RL) for reasoning frameworks where the LLM learns to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM reasoning trajectories with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines under the same setting. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 31 pages
♻ ☆ FactEHR: A Dataset for Evaluating Factuality in Clinical Notes Using LLMs
Verifying and attributing factual claims is essential for the safe and effective use of large language models (LLMs) in healthcare. A core component of factuality evaluation is fact decomposition, the process of breaking down complex clinical statements into fine-grained atomic facts for verification. Recent work has proposed fact decomposition, which uses LLMs to rewrite source text into concise sentences conveying a single piece of information, to facilitate fine-grained fact verification. However, clinical documentation poses unique challenges for fact decomposition due to dense terminology and diverse note types and remains understudied. To address this gap and explore these challenges, we present FactEHR, an NLI dataset consisting of document fact decompositions for 2,168 clinical notes spanning four types from three hospital systems, resulting in 987,266 entailment pairs. We assess the generated facts on different axes, from entailment evaluation of LLMs to a qualitative analysis. Our evaluation, including review by the clinicians, reveals substantial variability in LLM performance for fact decomposition. For example, Gemini-1.5-Flash consistently generates relevant and accurate facts, while Llama-3 8B produces fewer and less consistent outputs. The results underscore the need for better LLM capabilities to support factual verification in clinical text.
comment: To appear at MLHC 2025
♻ ☆ How Well Do LLMs Represent Values Across Cultures? Empirical Analysis of LLM Responses Based on Hofstede Cultural Dimensions KDD 2025
Large Language Models (LLMs) attempt to imitate human behavior by responding to humans in a way that pleases them, including by adhering to their values. However, humans come from diverse cultures with different values. It is critical to understand whether LLMs showcase different values to the user based on the stereotypical values of a user's known country. We prompt different LLMs with a series of advice requests based on 5 Hofstede Cultural Dimensions -- a quantifiable way of representing the values of a country. Throughout each prompt, we incorporate personas representing 36 different countries and, separately, languages predominantly tied to each country to analyze the consistency in the LLMs' cultural understanding. Through our analysis of the responses, we found that LLMs can differentiate between one side of a value and another, as well as understand that countries have differing values, but will not always uphold the values when giving advice, and fail to understand the need to answer differently based on different cultural values. Rooted in these findings, we present recommendations for training value-aligned and culturally sensitive LLMs. More importantly, the methodology and the framework developed here can help further understand and mitigate culture and language alignment issues with LLMs.
comment: KDD 2025
♻ ☆ A Survey of Conversational Search
As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.
comment: 38 pages, 8 figures, corresponding Github repository: https://github.com/fengranMark/ConvSearch-Survey
♻ ☆ Improving the fact-checking performance of language models by relying on their entailment ability
Automated fact-checking is a crucial task in this digital age. The NLP community has been trying various strategies to build robust fact-checking systems. However, we have not been very successful yet. One main reason behind this is that fact verification is a complex process. Language models have to parse through multiple pieces of evidence, often contradicting each other, to predict a claim's veracity. In this paper, we proposed a simple yet effective strategy, where we relied on the entailment ability of language models to improve the fact-checking performance. Apart from that, we did a comparison of different prompting and fine-tuning strategies, as it is currently lacking in the literature. Some of our observations are: (i) training language models with raw evidence sentences (TBE-1) and overall claim-evidence understanding (TBE-2) resulted in an improvement up to 8.20% and 16.39% in macro-F1 for RAW-FC dataset, and (ii) training language models with entailed justifications (TBE-3) outperformed the baselines by a huge margin (up to 28.57% and 44.26% for LIAR-RAW and RAW-FC, respectively). We have shared our code repository to reproduce the results.
comment: 44 pages
Information Retrieval 33
☆ Personalized Recommendation of Dish and Restaurant Collections on iFood KDD
Food delivery platforms face the challenge of helping users navigate vast catalogs of restaurants and dishes to find meals they truly enjoy. This paper presents RED, an automated recommendation system designed for iFood, Latin America's largest on-demand food delivery platform, to personalize the selection of curated food collections displayed to millions of users. Our approach employs a LightGBM classifier that scores collections based on three feature groups: collection characteristics, user-collection similarity, and contextual information. To address the cold-start problem of recommending newly created collections, we develop content-based representations using item embeddings and implement monotonicity constraints to improve generalization. We tackle data scarcity by bootstrapping from category carousel interactions and address visibility bias through unbiased sampling of impressions and purchases in production. The system demonstrates significant real-world impact through extensive A/B testing with 5-10% of iFood's user base. Online results of our A/B tests add up to 97% improvement in Card Conversion Rate and 1.4% increase in overall App Conversion Rate compared to popularity-based baselines. Notably, our offline accuracy metrics strongly correlate with online performance, enabling reliable impact prediction before deployment. To our knowledge, this is the first work to detail large-scale recommendation of curated food collections in a dynamic commercial environment.
comment: Workshop on Two-sided Marketplace Optimization: Search, Discovery, Matching, Pricing & Growth in conjunction with KDD Conference (KDD 2025) in Toronto, Canada
☆ Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
comment: In submission. Project website: https://double-bench.github.io/
LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
☆ Demystifying Sequential Recommendations: Counterfactual Explanations via Genetic Algorithms
Sequential Recommender Systems (SRSs) have demonstrated remarkable effectiveness in capturing users' evolving preferences. However, their inherent complexity as "black box" models poses significant challenges for explainability. This work presents the first counterfactual explanation technique specifically developed for SRSs, introducing a novel approach in this space, addressing the key question: What minimal changes in a user's interaction history would lead to different recommendations? To achieve this, we introduce a specialized genetic algorithm tailored for discrete sequences and show that generating counterfactual explanations for sequential data is an NP-Complete problem. We evaluate these approaches across four experimental settings, varying between targeted-untargeted and categorized-uncategorized scenarios, to comprehensively assess their capability in generating meaningful explanations. Using three different datasets and three models, we are able to demonstrate that our methods successfully generate interpretable counterfactual explanation while maintaining model fidelity close to one. Our findings contribute to the growing field of Explainable AI by providing a framework for understanding sequential recommendation decisions through the lens of "what-if" scenarios, ultimately enhancing user trust and system transparency.
☆ OpenLifelogQA: An Open-Ended Multi-Modal Lifelog Question-Answering Dataset
Lifelogging refers to the process of passively collecting, storing, and analysing personal daily life data using wearable devices. This data can support applications in memory preservation and enhancement. For example, using an ask-and-answer strategy, question-answering (QA) on lifelog data opens an interactive and interesting way to explore memorable events and insights into daily life. However, research resources for QA on lifelog data are limited to small-sized or synthetic QA datasets. In this paper, we present a novel lifelog QA dataset called OpenLifelogQA, building upon an 18-month lifelog dataset. Our dataset focuses on an open-ended and practical QA with real-world application in daily lifelog usage. We construct 14,187 pairs of Q&A with diverse types and difficulty levels. A baseline experiment is reported for this dataset with competitive average performance of 89.7% BERT Score, 25.87% ROUGE-L and 3.9665 LLM Score from LLaVA-NeXT-Interleave 7B model. We release this Q&A dataset to the research community to support new research into lifelog technologies, such as enabling personal chat-based assistants for lifelog data to become a reality.
☆ PyLate: Flexible Training and Retrieval for Late Interaction Models
Neural ranking has become a cornerstone of modern information retrieval. While single vector search remains the dominant paradigm, it suffers from the shortcoming of compressing all the information into a single vector. This compression leads to notable performance degradation in out-of-domain, long-context, and reasoning-intensive retrieval tasks. Multi-vector approaches pioneered by ColBERT aim to address these limitations by preserving individual token embeddings and computing similarity via the MaxSim operator. This architecture has demonstrated superior empirical advantages, including enhanced out-of-domain generalization, long-context handling, and performance in complex retrieval scenarios. Despite these compelling empirical results and clear theoretical advantages, the practical adoption and public availability of late interaction models remain low compared to their single-vector counterparts, primarily due to a lack of accessible and modular tools for training and experimenting with such models. To bridge this gap, we introduce PyLate, a streamlined library built on top of Sentence Transformers to support multi-vector architectures natively, inheriting its efficient training, advanced logging, and automated model card generation while requiring minimal code changes to code templates users are already familiar with. By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models, thereby unlocking their full potential in modern IR systems. Finally, PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT, demonstrating its practical utility for both research and production environments.
comment: 5 pages
☆ MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation ICDE 2025
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.
comment: Accepted by ICDE 2025 Research Paper
☆ Parameter-Efficient Single Collaborative Branch for Recommendation
Recommender Systems (RS) often rely on representations of users and items in a joint embedding space and on a similarity metric to compute relevance scores. In modern RS, the modules to obtain user and item representations consist of two distinct and separate neural networks (NN). In multimodal representation learning, weight sharing has been proven effective in reducing the distance between multiple modalities of a same item. Inspired by these approaches, we propose a novel RS that leverages weight sharing between the user and item NN modules used to obtain the latent representations in the shared embedding space. The proposed framework consists of a single Collaborative Branch for Recommendation (CoBraR). We evaluate CoBraR by means of quantitative experiments on e-commerce and movie recommendation. Our experiments show that by reducing the number of parameters and improving beyond-accuracy aspects without compromising accuracy, CoBraR has the potential to be applied and extended for real-world scenarios.
comment: 5 pages
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval SemEval-2025
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Taggus: An Automated Pipeline for the Extraction of Characters' Social Networks from Portuguese Fiction Literature
Automatically identifying characters and their interactions from fiction books is, arguably, a complex task that requires pipelines that leverage multiple Natural Language Processing (NLP) methods, such as Named Entity Recognition (NER) and Part-of-speech (POS) tagging. However, these methods are not optimized for the task that leads to the construction of Social Networks of Characters. Indeed, the currently available methods tend to underperform, especially in less-represented languages, due to a lack of manually annotated data for training. Here, we propose a pipeline, which we call Taggus, to extract social networks from literary fiction works in Portuguese. Our results show that compared to readily available State-of-the-Art tools -- off-the-shelf NER tools and Large Language Models (ChatGPT) -- the resulting pipeline, which uses POS tagging and a combination of heuristics, achieves satisfying results with an average F1-Score of $94.1\%$ in the task of identifying characters and solving for co-reference and $75.9\%$ in interaction detection. These represent, respectively, an increase of $50.7\%$ and $22.3\%$ on results achieved by the readily available State-of-the-Art tools. Further steps to improve results are outlined, such as solutions for detecting relationships between characters. Limitations on the size and scope of our testing samples are acknowledged. The Taggus pipeline is publicly available to encourage development in this field for the Portuguese language.2
comment: 24 pages, 5 Figures, 4 Tables
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ Investigating the Cognitive Response of Brake Lights in Initiating Braking Action Using EEG
Half of all road accidents result from either lack of driver attention or from maintaining insufficient separation between vehicles. Collision from the rear, in particular, has been identified as the most common class of accident in the UK, and its influencing factors have been widely studied for many years. Rear-mounted stop lamps, illuminated when braking, are the primary mechanism to alert following drivers to the need to reduce speed or brake. This paper develops a novel brain response approach to measuring subject reaction to different brake light designs. A variety of off-the-shelf brake light assemblies are tested in a physical simulated driving environment to assess the cognitive reaction times of 22 subjects. Eight pairs of LED-based and two pairs of incandescent bulb-based brake light assemblies are used and electroencephalogram (EEG) data recorded. Channel Pz is utilised to extract the P3 component evoked during the decision making process that occurs in the brain when a participant decides to lift their foot from the accelerator and depress the brake. EEG analysis shows that both incandescent bulb-based lights are statistically slower to evoke cognitive responses than all tested LED-based lights. Between the LED designs, differences are evident, but not statistically significant, attributed to the significant amount of movement artifact in the EEG signal.
comment: arXiv admin note: text overlap with arXiv:2010.10584
☆ Dual-disentangle Framework for Diversified Sequential Recommendation
Sequential recommendation predicts user preferences over time and has achieved remarkable success. However, the growing length of user interaction sequences and the complex entanglement of evolving user interests and intentions introduce significant challenges to diversity. To address these, we propose a model-agnostic Dual-disentangle framework for Diversified Sequential Recommendation (DDSRec). The framework refines user interest and intention modeling by adopting disentangling perspectives in interaction modeling and representation learning, thereby balancing accuracy and diversity in sequential recommendations. Extensive experiments on multiple public datasets demonstrate the effectiveness and superiority of DDSRec in terms of accuracy and diversity for sequential recommendations.
☆ ADSeeker: A Knowledge-Infused Framework for Anomaly Detection and Reasoning
Automatic vision inspection holds significant importance in industry inspection. While multimodal large language models (MLLMs) exhibit strong language understanding capabilities and hold promise for this task, their performance remains significantly inferior to that of human experts. In this context, we identify two key challenges: (i) insufficient integration of anomaly detection (AD) knowledge during pre-training, and (ii) the lack of technically precise and conte-aware language generation for anomaly reasoning. To address these issues, we propose ADSeeker, an anomaly task assistant designed to enhance inspection performance through knowledge-grounded reasoning. ADSeeker leverages a curated visual document knowledge base, SEEK-MVTec&VisA (SEEK-M&V), which we construct to address the limitations of existing resources that rely solely on unstructured text. SEEK-M&V includes semantic-rich descriptions and image-document pairs, enabling more comprehensive anomaly understanding. To effectively retrieve and utilize this knowledge, we introduce the Query Image-Knowledge Retrieval-Augmented Generation (Q2K RAG) framework. To further enhance the performance in zero-shot anomaly detection (ZSAD), ADSeeker leverages the Hierarchical Sparse Prompt mechanism and type-level features to efficiently extract anomaly patterns. Furthermore, to tackle the challenge of limited in industry anomaly detection (IAD) data, we introduce the largest-scale AD dataset, Multi-type Anomaly (MulA), encompassing 72 multi-scale defect types across 26 Categories. Extensive experiments show that our plug-and-play framework, ADSeeker, achieves state-of-the-art zero-shot performance on several benchmark datasets.
☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
☆ SustainableQA: A Comprehensive Question Answering Dataset for Corporate Sustainability and EU Taxonomy Reporting
The growing demand for corporate sustainability transparency, particularly under new regulations like the EU Taxonomy, necessitates precise data extraction from large, unstructured corporate reports. Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, requires high-quality, domain-specific question-answering (QA) datasets to excel at particular domains. To address this, we introduce SustainableQA, a novel dataset and a scalable pipeline for generating a comprehensive QA datasets from corporate sustainability reports and annual reports. Our approach integrates semantic chunk classification, a hybrid span extraction pipeline combining fine-tuned Named Entity Recognition (NER), rule-based methods, and LLM-driven refinement, alongside a specialized table-to-paragraph transformation. With over 195,000 diverse factoid and non-factoid QA pairs, SustainableQA is an effective resource for developing and benchmarking advanced knowledge assistants capable of navigating complex sustainability compliance
☆ RAVID: Retrieval-Augmented Visual Detection: A Knowledge-Driven Approach for AI-Generated Image Identification
In this paper, we introduce RAVID, the first framework for AI-generated image detection that leverages visual retrieval-augmented generation (RAG). While RAG methods have shown promise in mitigating factual inaccuracies in foundation models, they have primarily focused on text, leaving visual knowledge underexplored. Meanwhile, existing detection methods, which struggle with generalization and robustness, often rely on low-level artifacts and model-specific features, limiting their adaptability. To address this, RAVID dynamically retrieves relevant images to enhance detection. Our approach utilizes a fine-tuned CLIP image encoder, RAVID CLIP, enhanced with category-related prompts to improve representation learning. We further integrate a vision-language model (VLM) to fuse retrieved images with the query, enriching the input and improving accuracy. Given a query image, RAVID generates an embedding using RAVID CLIP, retrieves the most relevant images from a database, and combines these with the query image to form an enriched input for a VLM (e.g., Qwen-VL or Openflamingo). Experiments on the UniversalFakeDetect benchmark, which covers 19 generative models, show that RAVID achieves state-of-the-art performance with an average accuracy of 93.85%. RAVID also outperforms traditional methods in terms of robustness, maintaining high accuracy even under image degradations such as Gaussian blur and JPEG compression. Specifically, RAVID achieves an average accuracy of 80.27% under degradation conditions, compared to 63.44% for the state-of-the-art model C2P-CLIP, demonstrating consistent improvements in both Gaussian blur and JPEG compression scenarios. The code will be publicly available upon acceptance.
☆ Measuring the stability and plasticity of recommender systems
The typical offline protocol to evaluate recommendation algorithms is to collect a dataset of user-item interactions and then use a part of this dataset to train a model, and the remaining data to measure how closely the model recommendations match the observed user interactions. This protocol is straightforward, useful and practical, but it only captures performance of a particular model trained at some point in the past. We know, however, that online systems evolve over time. In general, it is a good idea that models reflect such changes, so models are frequently retrained with recent data. But if this is the case, to what extent can we trust previous evaluations? How will a model perform when a different pattern (re)emerges? In this paper we propose a methodology to study how recommendation models behave when they are retrained. The idea is to profile algorithms according to their ability to, on the one hand, retain past patterns -- stability -- and, on the other hand, (quickly) adapt to changes -- plasticity. We devise an offline evaluation protocol that provides detail on the long-term behavior of models, and that is agnostic to datasets, algorithms and metrics. To illustrate the potential of this framework, we present preliminary results of three different types of algorithms on the GoodReads dataset that suggest different stability and plasticity profiles depending on the algorithmic technique, and a possible trade-off between stability and plasticity.Although additional experiments will be necessary to confirm these observations, they already illustrate the usefulness of the proposed framework to gain insights on the long term dynamics of recommendation models.
☆ Recommending With, Not For: Co-Designing Recommender Systems for Social Good
Recommender systems are usually designed by engineers, researchers, designers, and other members of development teams. These systems are then evaluated based on goals set by the aforementioned teams and other business units of the platforms operating the recommender systems. This design approach emphasizes the designers' vision for how the system can best serve the interests of users, providers, businesses, and other stakeholders. Although designers may be well-informed about user needs through user experience and market research, they are still the arbiters of the system's design and evaluation, with other stakeholders' interests less emphasized in user-centered design and evaluation. When extended to recommender systems for social good, this approach results in systems that reflect the social objectives as envisioned by the designers and evaluated as the designers understand them. Instead, social goals and operationalizations should be developed through participatory and democratic processes that are accountable to their stakeholders. We argue that recommender systems aimed at improving social good should be designed *by* and *with*, not just *for*, the people who will experience their benefits and harms. That is, they should be designed in collaboration with their users, creators, and other stakeholders as full co-designers, not only as user study participants.
comment: Accepted to ACM TORS Special Issue on Recommender Systems for Social Good
☆ A Robust and Efficient Pipeline for Enterprise-Level Large-Scale Entity Resolution
Entity resolution (ER) remains a significant challenge in data management, especially when dealing with large datasets. This paper introduces MERAI (Massive Entity Resolution using AI), a robust and efficient pipeline designed to address record deduplication and linkage issues in high-volume datasets at an enterprise level. The pipeline's resilience and accuracy have been validated through various large-scale record deduplication and linkage projects. To evaluate MERAI's performance, we compared it with two well-known entity resolution libraries, Dedupe and Splink. While Dedupe failed to scale beyond 2 million records due to memory constraints, MERAI successfully processed datasets of up to 15.7 million records and produced accurate results across all experiments. Experimental data demonstrates that MERAI outperforms both baseline systems in terms of matching accuracy, with consistently higher F1 scores in both deduplication and record linkage tasks. MERAI offers a scalable and reliable solution for enterprise-level large-scale entity resolution, ensuring data integrity and consistency in real-world applications.
comment: 10 pages, 5 figures
☆ NAEx: A Plug-and-Play Framework for Explaining Network Alignment
Network alignment (NA) identifies corresponding nodes across multiple networks, with applications in domains like social networks, co-authorship, and biology. Despite advances in alignment models, their interpretability remains limited, making it difficult to understand alignment decisions and posing challenges in building trust, particularly in high-stakes domains. To address this, we introduce NAEx, a plug-and-play, model-agnostic framework that explains alignment models by identifying key subgraphs and features influencing predictions. NAEx addresses the key challenge of preserving the joint cross-network dependencies on alignment decisions by: (1) jointly parameterizing graph structures and feature spaces through learnable edge and feature masks, and (2) introducing an optimization objective that ensures explanations are both faithful to the original predictions and enable meaningful comparisons of structural and feature-based similarities between networks. NAEx is an inductive framework that efficiently generates NA explanations for previously unseen data. We introduce evaluation metrics tailored to alignment explainability and demonstrate NAEx's effectiveness and efficiency on benchmark datasets by integrating it with four representative NA models.
☆ Are All Genders Equal in the Eyes of Algorithms? -- Analysing Search and Retrieval Algorithms for Algorithmic Gender Fairness
Algorithmic systems such as search engines and information retrieval platforms significantly influence academic visibility and the dissemination of knowledge. Despite assumptions of neutrality, these systems can reproduce or reinforce societal biases, including those related to gender. This paper introduces and applies a bias-preserving definition of algorithmic gender fairness, which assesses whether algorithmic outputs reflect real-world gender distributions without introducing or amplifying disparities. Using a heterogeneous dataset of academic profiles from German universities and universities of applied sciences, we analyse gender differences in metadata completeness, publication retrieval in academic databases, and visibility in Google search results. While we observe no overt algorithmic discrimination, our findings reveal subtle but consistent imbalances: male professors are associated with a greater number of search results and more aligned publication records, while female professors display higher variability in digital visibility. These patterns reflect the interplay between platform algorithms, institutional curation, and individual self-presentation. Our study highlights the need for fairness evaluations that account for both technical performance and representational equality in digital systems.
☆ Domain-Specific Fine-Tuning and Prompt-Based Learning: A Comparative Study for developing Natural Language-Based BIM Information Retrieval Systems
Building Information Modeling (BIM) is essential for managing building data across the entire lifecycle, supporting tasks from design to maintenance. Natural Language Interface (NLI) systems are increasingly explored as user-friendly tools for information retrieval in Building Information Modeling (BIM) environments. Despite their potential, accurately extracting BIM-related data through natural language queries remains a persistent challenge due to the complexity use queries and specificity of domain knowledge. This study presents a comparative analysis of two prominent approaches for developing NLI-based BIM information retrieval systems: domain-specific fine-tuning and prompt-based learning using large language models (LLMs). A two-stage framework consisting of intent recognition and table-based question answering is implemented to evaluate the effectiveness of both approaches. To support this evaluation, a BIM-specific dataset of 1,740 annotated queries of varying types across 69 models is constructed. Experimental results show that domain-specific fine-tuning delivers superior performance in intent recognition tasks, while prompt-based learning, particularly with GPT-4o, shows strength in table-based question answering. Based on these findings, this study identify a hybrid configuration that combines fine-tuning for intent recognition with prompt-based learning for question answering, achieving more balanced and robust performance across tasks. This integrated approach is further tested through case studies involving BIM models of varying complexity. This study provides a systematic analysis of the strengths and limitations of each approach and discusses the applicability of the NLI to real-world BIM scenarios. The findings offer insights for researchers and practitioners in designing intelligent, language-driven BIM systems.
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation
Traditional recommendation models often rely on unique item identifiers (IDs) to distinguish between items, which can hinder their ability to effectively leverage item content information and generalize to long-tailed or cold-start items. Recently, semantic tokenization has been proposed as a promising solution that aims to tokenize each item's semantic representation into a sequence of discrete tokens. These semantic tokens have become fundamental in training generative recommendation models. However, existing methods typically rely on RQ-VAE, a residual vector quantizer, for semantic tokenization. This reliance introduces several key limitations, including challenges in embedding extraction, hierarchical coarse-to-fine quantization, and training stability. To address these issues, we introduce LAMIA, a novel approach for multi-aspect semantic tokenization. Unlike RQ-VAE, which uses a single embedding, LAMIA learns an ``item palette''--a collection of independent and semantically parallel embeddings that capture multiple aspects of items. Additionally, LAMIA enhances the semantic encoders through domain-specific tuning using text-based reconstruction tasks, resulting in more representative item palette embeddings. We have conducted extensive experiments to validate the effectiveness of the LAMIA framework across various recommendation tasks and datasets. Our results demonstrate significant improvements in recommendation accuracy over existing methods. To facilitate reproducible research, we will release the source code, data, and configurations.
♻ ☆ A Foundational Schema.org Mapping for a Legal Knowledge Graph: Representing Brazilian Legal Norms as FRBR Works
Structuring legal norms for machine readability is a critical prerequisite for building advanced AI and information retrieval systems, such as Legal Knowledge Graphs (LKGs). Grounded in the Functional Requirements for Bibliographic Records (FRBR) model, this paper proposes a foundational mapping for the abstract legal Work - which is materialized as the Norm node in our legal Graph RAG framework - to the interoperable schema.org/Legislation vocabulary. Using the Normas.leg.br portal as a practical case study, we demonstrate how to describe this Work entity via JSON-LD, considering stable URN identifiers, inter-norm relationships, and lifecycle properties. This structured, formal approach provides the essential first step toward creating a deterministic and verifiable knowledge graph, which can serve as a formalized "ground truth" for Legal AI applications, overcoming the limitations of purely probabilistic models.
comment: Substantial revision. Now grounded in the FRBR model, mapping the legal norm as an abstract Work. Scope narrowed to the Work -> sdo:Legislation mapping (LegislationObject section removed). Emphasizes creating a deterministic 'ground truth' for Legal AI and Graph RAG
♻ ☆ Heterophily-Aware Fair Recommendation using Graph Convolutional Networks
In recent years, graph neural networks (GNNs) have become a popular tool to improve the accuracy and performance of recommender systems. Modern recommender systems are not only designed to serve end users, but also to benefit other participants, such as items and item providers. These participants may have different or conflicting goals and interests, which raises the need for fairness and popularity bias considerations. GNN-based recommendation methods also face the challenges of unfairness and popularity bias, and their normalization and aggregation processes suffer from these challenges. In this paper, we propose a fair GNN-based recommender system, called HetroFair, to improve item-side fairness. HetroFair uses two separate components to generate fairness-aware embeddings: i) Fairness-aware attention, which incorporates the dot product in the normalization process of GNNs to decrease the effect of nodes' degrees. ii) Heterophily feature weighting, to assign distinct weights to different features during the aggregation process. To evaluate the effectiveness of HetroFair, we conduct extensive experiments over six real-world datasets. Our experimental results reveal that HetroFair not only alleviates unfairness and popularity bias on the item side but also achieves superior accuracy on the user side. Our implementation is publicly available at https://github.com/NematGH/HetroFair.
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements KDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities to use search engines during inference is often suboptimal, as the LLM might not fully possess the capability on how to interact optimally with the search engine. This paper introduces Search-R1, an extension of reinforcement learning (RL) for reasoning frameworks where the LLM learns to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM reasoning trajectories with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines under the same setting. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 31 pages
♻ ☆ A Survey of Conversational Search
As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.
comment: 38 pages, 8 figures, corresponding Github repository: https://github.com/fengranMark/ConvSearch-Survey